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Department of Electrical & Electronic Engineering
Ahsanullah University of Science and Technology (AUST)

LAB 1:
Overview of DSP LAB (EEE 3218)

Objectives
The main objectives of this lab are:

• Introduction to basic terminologies

• Motivation for the DSP Lab

• Overview of the DSP Lab

PRELAB TASKS

• Read this laboratory tutorial carefully before coming to the laboratory class, so
that you know what is required.

• Follow the lecture notes of EEE 3217.

• Familiarize yourself with relevant MATLAB functions and codes necessary for
this experiment.

• Do not bring any prepared MATLAB code in the lab with any portable device.
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PART 1

Introduction
A signal is a function of a set of independent variables with time being perhaps the most
prevalent single variable. The signal itself carries some kind of information available for
observation. Most signals of interest in practice are recorded values of a physical quantities,
represented as a 1-D functions, such a time function , x(t) like speech or 2-D/3-D functions,
such as a spatial function f(x,y) like image or function of both space and time f(x,y,t) like
video . A signal carries information and contains energy.
By the term processing, we mean operating in some fashion on a signal to extract some useful
information. In many cases, this processing will be a nondestructive “transformation” of
the given data signal; however, some essential processing methods turn out to be irreversible
and thus destructive.
Finally, the word digitalmeans that the processing is done with a digital computer or specific
purpose digital hardware. For better clarification, we can briefly define analog, discrete,
and digital signals as follows:

• Analog Signal: a function x(t), continuous in amplitude, of a continuous indepen-
dent variable t (e.g., time).

• Discrete Signal: a function x[n] = x(nt0), continuous in amplitude, but defined
only at a set of discrete values of the independent variable, t = 0,±t0,±2t0, ...

• Digital Signal: a discrete signal with quantized (finite) amplitude values. For
example, there are 28 = 256 gray scale levels in an 8-bit digital image (Figure 1.1).

Figure. 1.1: A digital image of a DSLR Camera

Advantages & Applications of Digital Signal Processing
Advantages of using digital signals, including digital signal processing (DSP) and communi-
cation systems, include the following:
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• Digital signals can convey information being less susceptible to noise, distortion, and
interference.

• Digital circuits can be reproduced easily in mass quantities at comparatively low costs.

• Digital signal processing is more flexible because DSP operations can be altered using
digitally programmable systems.

• Digital signal processing is more secure because digital information can be easily en-
crypted and compressed.

• Digital systems are more accurate, and the probability of error occurrence can be
reduced by employing error detection and correction codes.

• Digital signals can be easily stored on any magnetic media or optical media using
semiconductor chips.

Applications of DSP are increasing in many areas where analog electronics are being replaced
by DSP chips, and new applications are depending on DSP techniques. With the cost of DS
processors decreasing and their performance increasing, DSP will continue to affect engineer-
ing design in our modern daily life. Some application examples using DSP are listed in Table
1.1.
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However, the list in the table by no means covers all DSP applications. Many more areas are
increasingly being explored by engineers and scientists. Applications of DSP techniques will
continue to have profound impacts and improve our lives.

DSP Nomenclatures & Topics
Figure 1.2 shows a broad overview of digital signal processing. Analog signals enter an ADC
from the left, and samples exit the ADC from the right, and may be 1) processed strictly
in the discrete time domain (in which samples represent the original signal at instants in
time) or they may be 2) converted to a frequency domain representation (in which samples
represent amplitudes of particular frequency components of the original signal) by a time-to-
frequency transform, processed in the frequency domain, then converted back to the discrete
time domain by a frequency-to-time transform. Discrete time domain samples are converted
back to the continuous time domain by the DAC. Note that a particular signal processing
system might use only time domain processing, only frequency domain processing, or both
time and frequency domain processing, so either or both of the signal processing paths shown
in Fig. 1.2 may be taken in any given system.

Figure. 1.2: A broad, conceptual overview of digital signal processing.

Time Domain Processing
In time domain processing the variation of the input and output variables are observed with
respect to time. The examples of time domain processing includes
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• Basic signal generations.

• Signal manipulation in time domain.

• Signal composition and decompositions.

• Linear Time Invariant (LTI) system response in time domain and convolution.

• Auto-correlation and Cross-correlation etc.

Frequency Transforms
A time-to-frequency transform operates on a block of time domain samples and evaluates
the frequency content thereof. A set of frequency coefficients is derived which can be used to
quantify the amplitudes (and usually phases) of frequency components of the original signal
or the coefficients can be used to reconstruct the original time, domain samples using an
inverse transform (a frequency-to-time transform). The most well-known and widely-used of
these transforms is the Discrete Fourier Transform (DFT), usually implemented by the
FFT (for Fast Fourier Transform), the name of a class of algorithms that allow efficient
computation of the DFT. Z-transforms also convert a time domain signal to complex
frequency domain.

Frequency Domain Processing
Most signal processing that can be done in the time domain can be also equivalently done
in the frequency domain. Each domain has certain advantages for a given type of problem.
Time domain filtering, for example, can be performed using frequency transforms such as
the DFT, and in certain cases, efficiency can be greatly improved using this technique. A
second use is in digital filter design, in which the desired filter frequency response is specified
in the frequency domain, i.e., as a set of DFT coefficients, for example. Yet a third and very
prevalent use is Transform Coding, in which signals are coded using a frequency transform
(usually eliminating as much redundant information as possible) and then reconstructed from
the transform coefficients. Transform Coding is a powerful tool for compression algorithms,
such as those employed with MP3 (MPEG II, Level 3) for audio signals, JPEG, a common
image compression format, etc. The use of such compression algorithms has revolutionized
the audio and video fields, making storage of audio and video data very economical and
deliverable via Internet.

Probable List of Lab Tasks
1 Week 1: introduction to DSP

Time Domain Processing

• Week 2: Discrete Time Signals and Linear System.

5



• Week 3: Convolution and Discrete LTI System response.

• Week 4: Sampling.

Domain Transformation

• Week 5: Frequency Transformation:

• Week 6: Z-transform:

Filter Design

• Week 7: IIR Filter Design

• Week 8: FIR Filter Design

• Week 9: Application of all the process learnt to a real life signal.

Assessment Procedure and Marks Distribution (Tentative)

Method Percentage
a. Attendance 10
b. Lab Reports & Performance 30
C. Lab Examination 1 10
d. Surprised Test (Lab Exam 2) 10
e. Lab Examination 3 10
f. Lab Final 30
Total 100

Answer the following questions and attach them with your lab report.
Questions:

1. Can you mention name of some physical signals along with their responding
human organ? Are they Analog or Digital?

2. Are the terms data and signal synonymous? Briefly clarify with example.

3. Do you think all digital data are always represented by 1 and 0 only? Briefly
Clarify.

4. When speed of processing is the only factor to be considered, whether Analog or
Digital Processing should be used? Why?

5. Which processing requires less power? Analog or Digital? Why?
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Part 2
An Overview of Using MATLAB and Octave

• Demonstration of signal-processing example using MATLAB

• Recap of MATLAB/OCTAVE & Some warm up problems.

• Functions to be used: help(),plot(), sin(), cos(),sind(),cosd()

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

About MATLAB
MATLAB is an environment for scientific computation especially suitable for computations
that require extensive use of arrays and graphical analysis. In this lab, all works will be done
using MATLAB. So a brief overview on how to use it arises naturally.

MATLAB works with three types of windows on computer screen. These are the Command
window, the Figure window and the Editor window. Any kind of commands are typed in the
command window, such as the command to run a function, indicated by the prompt (>>).
All the output and error will appear in this command window. The Figure window only
pops up whenever you plot something. The Editor window is used for writing and editing
MATLAB programs (called M files). Current Drive or Folder allows you to access your saved
files. Workspace explore data that you create or import from files. A figure is shown in figure
1.3 to show the desktop when you start MATLAB.
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Figure. 1.3: MATLAB Window

About OCTAVE
OCTAVE is an open-source program that you can use as an alternative to MATLAB. Its
basic numerical functions are very similar to MATLAB, in terms of appearance and usage. In
addition, because the OCTAVE language is similar to MATLAB, most MATLAB programs
should be able to run on OCTAVE.

You can download the OCTAVE from the following link.

https://www.gnu.org/software/octave/download

When you start OCTAVE, the desktop appears in its default layout as the following figure
1.4.

• Current Directory — Create or access your files.

• File Browser — You can browse your files in any directory throughout your computer.

• Workspace — The workspace contains variables that you create or import into Octave
from data files or other programs. You can view and edit the contents of the workspace
in the Workspace browser or in the Command Window.

• Command History — The Command History window displays a log of statements that
you ran in the current and previous Octave sessions. The Command History lists the
time and date of each session in the short date format for your operating system,
followed by the statements from that session.
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Figure. 1.4: OCTAVE Window

• Variable Editor — The workspace consists of the variables you create and store in
memory during a Octave session. You can create new variables in the workspace by
running Octave code or using existing variables. You can view and edit those variables
using Variable Editor.

• Command Window — Command Window is the main window where you type com-
mands directly to the Octave interpreter.

• Editor — The Editor window is a simple text editor where you can load, edit and
save complete Octave programs. The Editor window also has a menu command (De-
bug/Run) which allows you to submit the program to the command window.

• Documentation — The Documentation window gives you access to a great deal of useful
information about the Octave language and Octave computing environment. It also has
a number of example programs and tutorials.

Figure 1.5 shows the Editor window of the Octave.
However, functions in Octave are divided into different packages. These packages do not load
in Octave by default. You need to manually load them in the environment. To do this, you
need to write the following command in the command window.

pkg load package_name

Here, package_name is the name of the package that you will use. For DSP lab, we need the
signal package. That means, the package name will be signal. Therefore, you need to write
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Figure. 1.5: OCTAVE Editor Window

the following command in the command window each time you open/start the Octave.

pkg load signal

MATLAB/OCTAVE Basics

Variable Declaration
While declaring a variable in MATLAB/OCTAVE, the following things should be remem-
bered:

• Variable Names are case-sensitive i.e. A and a are different variables.

• A variable name in MATLAB/OCTAVE can contain upto 63 characters.

• Variable names must begin with a letter. Following that, any number of letters, digits
and underscores can be added.

Following code snippet shows different ways of declaring variables in MATLAB/OCTAVE.
The fifth variable declaration will give an error upon compiling because it started with a num-
ber instead of a letter. And also any name that resembles with built in MATLAB/OCTAVE
variable like pi is not recommended.
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Listing 1: Examples of Variable Declaration
1 clc; % use to clear all the previous lines in the command window
2 clear all; % use to clear all the previous variables
3 close all; % use to close all the figure windows used previously
4
5 x = 2; % Valid
6 a_b_c = 1; % Valid
7 X = 10; %This X and the first x are not the same
8 % MATLAB is case−sensitive
9 this_is_a_variable = 3; % Valid
10 3abc = 15; %This is not a valid variable name
11 % This will give an error
12 pi = 5; %This is also not a valid variable name as pi is the
13 % built in variable for MATLAB. This will not give any error
14 % but not recommended

Data Type
The default data type in MATLAB/OCTAVE is double precision array. While we’ll use this
type of data mostly in this lab, several other data types are also important. MATLAB/OC-
TAVE variables can be used in command prompt without pre-definition. As arrays will be
used mostly in our lab, we’ll discuss how to define and access arrays. Few rules of defining
and accessing arrays:

• Array indices begin with 1. So if A = [1, 2, 3, 4, 5] then A[1] = 1 and A[0] will give an
error.

• Column elements are separated by a comma (,) and row elements are separated by
semicolon (;).

• When defined, array elements are contained between the [ and ] symbols.

• The element in i row and j column of matrix A(Aij) is accessed by A(i,j).

• A sequential list of elements can be generated by the colon (:) operator using the
following form: initial value: increment : final value.

• Complex entries are used using i and j.

Few examples corresponding the above points are given below in a MATLAB/OCTAVE Code
snippet.

Listing 2: MATLAB/OCTAVE Codes for declaring and accessing Arrays
1 clear all;
2 clc;
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3
4 a = [1, 3, 5]; % creating a 1x3 row array
5 b = [2; 4; 6]; % creating a 3x1 column array
6
7 A = [1, 3, 5; 2, 4, 6]; %creating a 2x3 matrix
8
9 c = A(1,2); % c is the element of 1st row and 2nd column of A
10 d = A(2,2); % d is the element of 2nd row and 2nd column of A
11
12 B = 2:2:10; % B is an array containing element from 2 to 10 with an increment

2
13 C = [2,4,6,8,10]; % B and C are the same array
14
15 D = [1+2*j, 2+1*j, 4−5*j] % creating a 1x3 complex row vector

Array Operations
The arithmatic operations +,-,* and / by default correspond to true matrix computation.
Few points regarding array operations.

• A*B is the usual matrix product between A and B. Here the dimension mismatch will
give an error.

• A.*B is the element by element manipulation. Any operator followed by dot(.) will
be element by element operation.

• Any function of a matrix will result in an output with the individual element as argu-
ment of the function. For example exp(A) will result in a matrix with element being
the exponential of each element of A.

Listing 3: Sample code from MATLAB/OCTAVE on array operations
1 clc;
2 clear all;
3
4 A = [1, 2, 3]; % a row array of 3 elements
5 B = [2, 4, 6]; % a row array of 3 elements
6 C = [1; 2; 3]; % a column array of 3 elements
7
8 D = A+B ; % D is the sum of the two arrays.
9 E = A−B; % E is the subtraction of the two arrays
10 F = C*A; % F is the matrix product of A and C
11 G = A.*B; % G is the element wise product of A and B
12 H = exp(A)+sin(B); % This computes two functions of A and B. The size of any

function of any array is that of the array.
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Extracting Sub-matrix
A portion of a matrix can be extracted and stored in a smaller matrix by specifying the rows
and columns to extract. The syntax is:

sub_matrix = matrix(r1:r2, c1:c2)

where r1(c1) and r2(c2) denote the beginning and ending rows(columns). Suppose we have
a 4× 5 matrix A given by the following matrix and we want to extract the portion marked
with lines. 


1 3 5 7 9
0 2 4 6 8
9 7 5 3 1
8 10 6 4 5

Listing 4: Extracting Submatrix
1 clc;
2 clear all;
3 close all;
4
5 A = [1 3 5 7 9; 0 2 4 6 8; 9 7 5 3 1; 8 10 6 4 5]; % defining the matrix
6
7 % We want to extract the submatrix [9 7 5; 8 10 6] which consists of
8 % elements of 3rd and 4th row and 1st, 2nd and 3rd column of A
9 sub_mat = A(3:4, 1:3);
10
11 Output:
12
13 sub_mat =
14
15 9 7 5
16 8 10 6

Plotting with MATLAB/OCTAVE
MATLAB/OCTAVE has a lot of functions for plotting. The basic one will plot one vector
vs. another. Command plot(a,b) will plot the b vector vs. a vector treating the elements
of a vector as abscissa (or x axis) and the second as the ordinate (or y axis). The vectors
have to be the same length. If the second vector is not given, MATLAB/OCTAVE will plot
the vector vs. its own index. There are many functions that can be used to format the
figures. One can edit the title, the plotting style, color and so on. You can know about any
MATLAB/OCTAVE functions by typing help function-name in the command window.
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Listing 5: Sample code from MATLAB/OCTAVE on plotting
1 clc;
2 clear all;
3 close all;
4
5
6 x = 1:0.1:10; % creating an array of elements from 1 to 10 with 0.1 increment
7
8 y = x.^2 + 20*x + 15*x.*sin(x); %computing a function of x
9
10 plot(x,y, 'Linewidth', 2); % plotting the figure

stem is used for displaying a discrete-time signal. The command format is the same as
plot. We’ll learn more about stem in the next lab. Whenever multiple plots are needed to
be shown in a figure, the function subplot is used. The basic syntax is subplot(m,n,p).
subplot(mnp) breaks the Figure window into an m-by-n matrix of small axes, selects the
pth axes object for for the current plot, and returns the axis handle. The axes are counted
along the top row of the Figure window, then the second row, etc. For example

subplot(2,1,1), plot(time, signal1)

subplot(2,1,2), plot(time, signal2)

The whole figure window is divided into a 2-by-1 matrix. In the upper portion of the window,
signal1 is plotted and signal2 is plotted in the lower portion.
An example code is given below:

Listing 6: Use of Subplot
1 clc;
2 clear all;
3 close all;
4
5 %In this problem we'll generate two signals
6 %and plot them in a single figure using subplot
7
8 t = −10:0.01:10; %defining time variable
9
10 signal1 = t.^2; % signal1 = t^2
11 signal2 = t.^3+4*t.^2+5; % signal2 = t^2+2*t+sqrt(t)
12
13 subplot(2,1,1)
14 plot(t, signal1, 'Linewidth', 2); % it will plot the signal in the top

portion ...
15 % of the window
16 subplot(212) %note that (2,1,2) or (212) both are correct
17 plot(t, signal2, 'Linewidth', 2);
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For Loop
Like any other programming language, MATLAB also has functions for iteration structures.
We’ll see only the for function here. The syntax for writing for loop is:

1: for <variable = expression> do
2: sentence;
3: sentence;
4: ... ...
5: ... ...
6: sentence;
7: end

An example code is given here:

Listing 7: Sample code on for loop
1 clc;
2 clear all;
3
4 % This code computes the sum of the elements of a given array
5 % using for loop
6 a = [1, 2, 3, 4, 5, 6]; % given array
7 n = length(a); % length gives the length of the vector
8 sum = 0; % initializing the sum
9 for i = 1:n %remember in matlab indices start from 1
10 sum = sum + a(i); %computes the sum
11 end % every for loop has an end!

Sample Problem 1: Compile and run the codes used for plotting and subplotting
different signals and draw the output waveforms.
Sample Problem 2: Generate a sinusoidal signal with 10 kHz and show it for 10ms.
Assume amplitude values and necessary data. Use sin() and plot() function first.
Then use cos(), sind(), cosd() functions to repeat the same. [Hint: use doc sin
command in command prompt]
Sample Problem 3: Generate a sinusoidal signal with 1 kHz with a initial value =
A√
2
. A is the amplitude value = 10 here show its first 4 cycles. Use sin() and plot()

function first. Then use cos(), sind(), cosd() functions to repeat it.
Sample Problem 4: Generate the following waveshape given in figure 1.6 with proper
labeling.
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Figure. 1.6: Waveform for Sample Problem 4

Post Lab Tasks

• Go through the Overview of MATLAB/OCTAVE Part thoroughly.

• Submit the codes along with the plots as a MS word file strictly by
the next week. Also work out the sample problems.

• Use a cover page containing the lab name and code along with student’s
detailed particulars.
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LAB 2:
Discrete Time Signals & Linear System

Objectives
The main objectives of this lab are:

• Introduction to some elementary discrete time signals

• Concept of elementary Signal Operations

• Basic idea of Linear & Non-linear System

PART 1

Introduction
Depending on the nature of independent variables, signals are broadly classified into con-
tinuous and discrete signals. A continuous signals will be denoted by x(t) in which the
independent variable t can take any value. A discrete signal will be denoted by x[n] in which
the independent variable n can take only integer values. First we’ll discuss different types of
DT signals, some elementary operations on the signals and finally we’ll discuss the idea of
a linear and non-linear system. The DT signals discussed here very important because they
can be used to construct or represent more complex signals.

Some Elementary DT Signals

Unit Impulse Sequence

It is also called unit sample sequence or Kronecker Delta function and is denoted by δ[n]. It
is defined by the following way:

δ[n] =

{
1, n = 0
0, n 6= 0

(1)

More generally,

δ[n− n0] =

{
1, n = n0

0, n 6= n0
(2)

Unit Step Signal

The unit step signal, denoted by u[n] is defined as:

u[n] =

{
1, n ≥ 0
0, n < 0

(3)
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More generally,

u[n− n0] =

{
1, n ≥ n0

0, n < n0
(4)

Sinusoidal Sequence

DT sinsoidal sequence is represented by: x[n] = A sin(nω + φ) where ω is the angular
frequency and φ is the phase. Unlike continuous sinusoid signals, DT sinusoids may or may
not be periodic depending on the value of ω. For a DT sinusoid to be periodic, ω must be a
rational multiple of 2π i.e. ω = k × 2π where, k is a rational number.

Elementary Signal Operations
In this section, we’ll consider some simple modifications or manipulations involving the in-
dependent variable and the signal amplitude (dependent variable). Transformation of the
independent variable(time) can be of three types:

1. Time Shifting

2. Time Reversal

3. Time Scaling

Time Shifting

Let us consider a discrete-time signal x[n]. If we replace the independent variable n by n-k
(k is an integer), this results in a shift of the signal in time. If k > 0, the time shift result in
a delay of the signal by k units in time. On the other hand, if k < 0, the time shift results
in an advance of the signal by |k| units in time.

Time Reversal

If we replace the independent signal n by -n, the transformation results in the folding or
reflection of the signal about the time origin n = 0. This is called Time Reversal operation.
Time reversal and time shifting operations are required while computing convolution of two
signals.

Time Scaling

A third modification of the independent variable is the replacement of n by nk where k is an
integer. This is termed as Time Scaling. Time scaling of a discrete signal is related to the
rate of sampling. If k > 1, this modification is downsampling or decimation and if 0 < k < 1,
this is called upsampling or interpolation. We’ll learn about downsampling and upsampling
in detail in Lab 4.

The transformation of dependent variable or signal amplitude include Amplitude scaling,
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signal addition and signal multiplication. Amplitude scaling is simply multiplying the signal
values by a constant number. Addition and multiplication of two signals are defined on a
sample-to-sample basis. For example, while computing addition of two signals x1[n] and
x2[n], first sample of x1[n] will be added to first sample of x2[n]. For this reason, in order to
add or multiply two discrete signals, they must be of the same length.

Even-Odd Decomposition of a Signal
A real valued signal x[n] is called even or symmetric if it satisfies the condition: x[−n] = x[n]
i.e. time reversal of the signal will not alter it. On the other hand, a signal is called odd
or anti-symmetric if x[−n] = −x[n]. Examples of signals with even and odd symmetry are
shown in figure.
It can be shown that any real signal can be expressed uniquely as the sum of an even signal
and an odd signal. The even signal component is formed by adding x[n] to x[−n] and dividing
by 2.

xe =
1

2
(x[n] + x[−n])

(Verify this is an even signal!). In the same manner, the odd component x0[n] can be formed:

x0[n] =
1

2
(x[n]− x[−n])

(Verify this is an odd signal!). You can check that adding xe[n] and x0[n] will result in the
original signal x[n]. Note that, the even-odd decomposition depends on the location of the
origin. If the signal is shifted, the decomposition will change.

0

5

10
(a) Even Signal

-10 -8 -6 -4 -2 0 2 4 6 8 10

-20

-10

0

10

20
(b) Odd Signal

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure. 2.1: Example of Even and Odd Signal
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Discrete Time Systems: Linear & Non-Linear System
A discrete time system is a device or an algorithm that operates on an input discrete-time
signal according to some well defined rules to produce an output discrete time signal. The
output signal is also called the response of the system. Mathematically, a system is a function.
The input signal x[n] is transformed by the system into a signal y[n] which we express
mathematically,

y[n] = T (x[n])

where T represents the transformation. Here it is noted that, in general y[n] is a function of
the entire sequence {x[n]} not just the single time point x[n].

Figure. 2.2: Block Diagram of a discrete-time system

Discrete time systems can be subdivided into linear and non-linear system. A linear
system is one that satisfies the additive and homogeneity property. Additivity property
implies that the sum of the input signals will be transformed into the sum of the individual
output signals. For example, suppose y1[n] and y2[n] are the corresponding output signals
for inputs x1[n] and x2[n] respectively. Now if the input is the sum of x1[n] and x2[n] i.e.
x[n] = x1[n] + x2[n] the output will be the sum of y1[n] and y2[n]: y[n] = y1[n] + y2[n]. And
homogeneity means if the input is scaled by a factor, the output will be scaled by the same
factor. For example, if y[n] is the output for an input sequence x[n], then ax[n] will give the
output ay[n]. If a system satisfies these two properties, it is called Linear System otherwise
it is known as Non-Linear System. The two properties are, sometimes, combined into one:
superposition principle. So if a signal satisfies the superposition principle, it is linear
otherwise, it is non-linear. For example, system described by y[n] = 10x[n] is linear but
y[n] = x2[n] is non-linear.
Linear Systems are important and useful in digital signal processing. Because linear systems
are easier to analyze and many non-linear systems are approximately linear to the first order.
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PRELAB TASKS
• Sketch qualitatively the following DT signals in a paper: i) δ[n + 2] + 2 ∗ u[n −
1] + 3 ∗ u[n− 4].

• Find the period of the following DT signals: i) sin(
√
3πn), ii) sin(

π

10
n)+cos(

π

5
n).

• If x[n] = {2, 1
↑
, 3, 4}, sketch x[-n+3].

• Make a list of three practical examples of linear and non-linear systems.
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Part 2
Discrete-Time Signal Operations in

MATLAB/OCTAVE

• Generating the Discrete Time Signals using MATLAB/OCTAVE

• Elementary Signal operations implemented using MATLAB/OCTAVE

• How to define a function

• Functions to use: stem(), exp(), sin(), min(), max(), fliplr().

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this part of our lab, we’ll show how to generate the discussed Discrete time signals and
how to implement various signal operations i.e. time shifting, time reversal, addition and
multiplication of signals using MATLAB/OCTAVE. Finally, we’ll see the definitive property
of linear and non-linear system using some examples.
In this week’s MATLAB/OCTAVE code, we’ll write some functions so that we can use them
later. The basic syntax of any function is:

Listing 1: Syntax for writing a Function in MATLAB/OCTAVE
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1 function [output vectors] = name_of_the_function(input vectors)
2
3 %Write the code what you want to do with the function
4
5 end

Remember: the function name must not conflict with any built in function’s name and save
the function with the name written in the .m file. For example, here we’ve written a function
to generate δ[n− n0] named unit_impulse. The inputs to this function are the starting (n1)
and end point(n2) of the index/time variable and the location of the impulse (n0).

Listing 2: Unit Impulse Sequence
1 function [x,n] = unit_impulse(n0, n1, n2)
2
3 % Generates x[n] = delta(n−n0)
4 % n1<=n<=n2
5 % n0 is the origin of the unit impulse function
6 % We'll use logical index concept here to compute
7 % unit impulse
8
9 n = n1:n2; % defining the index vector n
10
11 x = (n==n0); % here logical indexing is used i.e. x = 1 if n==n0.
12
13 end

Later call this function with appropriate inputs and outputs in your main code like the
following code snippet. Here the unit_impulse function has been called to generate δ[n−2]
and plot them for −5 ≤ n ≤ 5.

Listing 3: Examples of generating unit impulse sequence
1 clc;
2 clear all;
3 close all;
4
5 [x,n] = unit_impulse(2,−5,5); %calling unit_step function
6 stem(n,x); %displaying the output

Similarly, unit step function u[n] can be generated as shown in the following code snippet:

Listing 4: Unit Step Function
1 function [u, n] = unit_step(n0, n1, n2)
2
3 % n0 = the origin
4 % n1 = starting index number
5 % n2 = ending index number
6
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7 n = n1:n2; %defining the index vector
8
9 u = (n>=n0); % u[n−n0] = 1 if n>=n0. This implemented here using
10 ... logical indexing
11 end

Listing 5: Example Code to generate unit step sequence
1 clc;
2 clear all;
3 close all;
4
5
6 [x,n] = unit_step(2,−5,7); %calling unit_step function
7 stem(n,x); %displaying the output

The following code has been written to generate a general sinusoidal with zero damping. The
expression for this function is:

x[n] = A exp (an) sin (nω0 + φ)

where A is the amplitude, a is the damping constant, ω0 is the angular frequency and φ is
the phase. In the following code, A = 10, a = 0, ω0 =

π
5
and φ = 0. It has been plotted for

−10 ≤ n ≤ 10.

Listing 6: Generating Sinusoidal Sequence
1 clc;
2 clear all;
3 close all;
4
5 %In this code we'll show a sinusoidal function
6 % of the form x[n] = A*exp(a*n)*sin(w0*n+phi)
7 n = −10:10; %defining the index variable
8 w0 = pi/5; %angular frequency of the sinusoid
9 a = 0; %damping factor
10 phi = 0; %phase in radian
11 A = 10; %amplitude
12 x = A*exp(a*n).*sin(w0*n+phi); %Look at the elementwise operation!!
13
14 stem(n,x); %plotting the output

Now we’ll write two functions to show time shifting and time reversal operation. In time
reversal operation, a built in function is used: fliplr(). You can know more about this
function by going through the documentation of this function.

Listing 7: sigshift Function to implement time shifting
1 function [y,n] = sigshift(x,n1,n0)
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2 %We'll generate y[n] = x[n−n0]
3
4 n = n1+n0; %new index
5 y = x; % Here only the index will change, not the actual signal's value
6
7 end

Listing 8: sigfold Function to implement time reversal
1 function [y,n] = sigfold(x, m)
2
3 % This code will generate y[n] = x[−n]
4 % The folding operation
5 % Use fliplr function which flips the elements of an array left to right
6 n = −fliplr(m); % generating n = −m index
7 y = fliplr(x);
8 end

You can call these functions to your main code to implement x[n−4] or x[−n] given function
x[n].
Now we’ll add two signals using MATLAB/OCTAVE. Remember from part 1, while adding,
the length of the signals must be the same. In order to make the length of the signals same,
required additional zeros can be inserted before or after a signal. For example: in case of
x1 = {1, 2

↑
, 3} x2[n] = {3, 4, 5

↑
, 6}, a zero can be inserted at the beginning of x1 so that

its length and indices get matched to those of x2[n]. This is called zero padding. In the
following code snippet, at first this zero padding is done. Then element wise addition has
been carried out.

Listing 9: sigadd function to add two signals
1 function [y,n] = sigadd(n1, x1, n2, x2)
2
3 % In order to add two signals, we need to
4 % make their length equal by padding zeros otherwise dimension mismatch
5 % will occur
6 %n1 = index vector of signal x1
7 %n2 = index vector of signal x2
8 %x1 = signal 1
9 %x2 = signal 2
10
11 n = min(min(n1),min(n2)):max(max(n1),max(max(n2))); % Defining the index
12 %vector for the output signal. For example if n1 = −3:2 and n2 = 0:4
13 % then n will run from −3 to 4. So we need to define 'n' from the minimum
14 % of individual minimum of n1 and n2. The same goes for the maximum.
15 y1 = zeros(1, length(n)); %initializing two vectors to store
16 y2 = y1; ... the zero padded signals
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17 y1 (((n>=min(n1)) & (n<=max(n1)))) = x1; % The idea is that if min(n1)<=n<=
max(n1)

18 y2 (((n>=min(n2)) & (n<=max(n2)))) = x2; ... then y1 = x1(y2=x2).
19 y = y1+y2;
20
21 end

Finally this function is called to exectue the addition of two signals.

Listing 10: Code to add two signals using sigadd
1 clc;
2 clear all;
3 close all;
4
5
6 n1 = −2:2;
7 n2 = −3:1;
8
9 x1 = n1; %x1 = 2n1
10 x2 = n2; %x2 = square(n2)
11
12 [y,n] = sigadd(n1,x1,n2,x2); %calling sigadd function to add two signals
13 %you can plot the output signals to visualize them

In this exact process following addition, signal multiplication can also be done. Using sigadd
and sigfold functions, one can decompose any signal x[n] into even and odd components.
First generate x[−n] and then use the formula for even and odd component given in part 1.

Finally we’ll demonstrate the definitive property of linear and non-linear system. We’ll show
that if the superposition of two signals are given input to a linear system, the output will
also be the superposition of the individual outputs and for non-linear system this will not be
the case.

For this reason, we’re defining two systems: system1 and system2. system1 is defined by
the equation: y[n] = 0.5x[n] and system2 is defined by: y[n] = x2[n] + 5x. Then we’ll take
two signals x1[n] = n + 2 and x2[n] = n for 0 ≤ n ≤ 9. We’ll give the following inputs to
system1 and system2: 2x1[n], 3x2[n] and 2x1[n] + 3x2[n]. Then we show the output curves
for each of these signals. The code for doing this task is given below. In the following codes,
it has been assumed that the input signals are of the same length to avoid complexity.

Listing 11: Defining system1
1 function [y,n] = system1(x,n)
2
3 y = 0.5*x;
4
5 end
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Listing 12: Defining system2
1 function [y,n] = system2(x,n)
2
3 y = x.^2+5*x;
4
5 end

Listing 13: Output results for system1
1 clc;
2 clear all;
3 close all;
4
5 %Linear System & Non Linear system demonstration
6
7 n = 0:9; %index vector
8 x1 = n+2; %input signal 1
9 x2 = n; %input signal 2
10 %output of system1 & system2 defined by functions system1 and system2
11 % we're assuming x1 and x2 are of the same length for avoiding complexity
12 [y1, n1] = system1(2*x1, n);
13 [y2,n2] = system1(3*x2,n);
14 [y3,n3] = system1(2*x1+3*x2,n);
15
16 subplot(211)
17 stem(n1, y1+y2);
18 subplot(212)
19 stem(n3, y3);
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Figure. 2.3: Output Plots for system1

Observing the plot figure(2.3), it is seen that the sum of the individual output is equal to
the output corresponding to the superposed inputs. So system 1 is a linear system.

Post Lab Tasks
• Problem 1: Modify the function sigadd renaming sigmult to multiply two

signals.

• Problem 2: Using function sigfold and sigadd, write a code that will decom-
pose any real signal into its even and odd counterparts. Plot the component.

• Problem 3: Verify that system2 is non-linear by writing a code just like the
linear one.

• Problem 4: If x[n] = {1, 1, 2, 3, 5
↑
, 8, 13, 21, 34, 55}, using the functions sigfold

and sigshift show i) x[-n-3] and ii) x[-n+4].

• Problem 5: Are time shifting and time reversal operations commutative? Verify
this by using problem 4.
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LAB 3:
Convolution

and
Discrete LTI System Response

Objectives
The main objectives of this lab are:

• Introduction to Convolution

• Properties of Convolution

• Introduction to Cross-correlation and Auto-correlation

PART 1
In our previous lab week, we studied systems and the difference between a linear and

non-linear system. The output of a system is also termed as response of the system. When
the input to a system is a delta signal i.e. δ(t) or δ[n], the corresponding output is called
Impulse Response of the system. Among various types of systems, Linear Time Invariant
(LTI) systems are of special attention due to their mathematical simplicity. The impulse
response of system can be determined in time domain by solving the characteristic difference
equation. And an LTI system is completely characterized by its impulse response in time
domain. Using the concept of convolution sum, we can determine the output of any linear
time invariant system to any arbitrary input signal from its impulse response.

Decomposition of a DT signal into impulses
Recall that the impulse/unit impulse sequence δ[n − n0] is zero everywhere except n = n0

where it has a value 1. Consider an arbitrary signal x[n]. If we multiply x[n] by δ[n], we’ll
get x[0] as δ[n] is zero everywhere except n = 0. So, we can write

x[n]δ[n] = x[0]δ[n]

This is called sifting property. Due to this property, we can extract any sample from x[n] by
multiplying it by a shifted delta, δ[n− k]. In general,

x[k]δ[n− k] = x[k]δ[n− k]

is a sequence that is zero everywhere except at n = k where its value is x[k]. Thus if we
repeat this multiplication over all possible values of k, −∞ ≤ k ≤ ∞, and sum all the product
sequences, the result will be a sequence equal to the sequence x[n]. That is,

x[n] =
∞∑

k=−∞

x[n]δ[n− k]
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. Thus any arbitrary input signal can be expressed as the sum of shifted and scaled unit
impulses. For example,

x[n] = {2, 3, 5
↑
, 8, 13} = 2δ[n+ 2] + 3δ[n+ 1] + 5δ[n] + 8δ[n− 1] + 13δ[n− 2]

Now, we’ll see due to this decomposition as well as linearity and time invariance property,
the response of an LTI system to an arbitrary input signal can be expressed in terms of the
unit impulse response of the system.

Convolution Sum
Let us consider a discrete time signal x[n] input to an LTI system with impulse response h[n]
(figure 3.1). We denote the output of the system sa y[n]. Recall that, h[n] is the response
of the system to the unit impulse function δ[n].

Figure. 3.1: Block Diagram of a Linear Time Invariant System with input x[n], impulse
response h[n] and output y[n].

We represent this as: δ[n] −→ h[n]. This means that h[n] is the output of the system to a
δ[n] input.

Because the system is time invariant: δ[n-k] −→ h[n-k]

Because the system is linear, we apply homogeneity property: x[k]δ[n-k] −→ x[k]h[n-k]

Because of additivity property due to linearity:
∞∑

k=−∞

x[k] δ[n-k] −→
∞∑

k=−∞

x[k]h[n-k]

Now from the previous section, we recognize that
∞∑

k=−∞

x[k]δ[n-k] is just the input signal x[n]

and
∞∑

k=−∞

x[k]h[n-k] is the total output y[n] of the system. The total response of the system

is termed as the convolution sum of the sequence x[n] and h[n]. The convolution sum
operator is represented by putting ∗ symbol between the sequences. So, we can summarize
the above discussion by stating that the input sequence x[n] is convolved with the impulse
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response h[n] to yield the output y[n]. Mathematically,

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[k]h[n-k]

Therefore, as we said earlier, an LTI system is completely characterized by its impulse re-
sponse. The actual computation process of convolution sum will be discussed in theory (EEE
3217). In MATLAB, we’ll compute this sum using a built-in function named conv. We’ll
discuss more about this function in the coding section of this manual.

Properties of Convolution
In this section, we’ll mention some properties of convolution. We’ll not going in detail
discussion or formal proof of these properties.

Commutative Property

Commutative property states that the order in which two sequences are convolved is not
important. Mathematically, this means that

y[n] = x[n] ∗ h[n] = h[n] ∗ x[n]

From a system point of view, this property states that a system with input x[n] and impulse
response h[n] behaves exactly the same way as a system with input h[n] and impulse response
x[n]. This is shown in figure 3.2(a).

Associative Property

Convolution operator satisfies associative property which is

y[n] = (x[n] ∗ h1[n]) ∗ h2[n] = x[n] ∗ (h1[n] ∗ h2[n])

From a system point of view this property states that if two systems with impulse response
h1[n] and h2[n] are cascaded as shown in figure 3.2(b), the equivalent system will have an
impulse response equal to the convolution of h1[n] and h2[n].

heq[n] = h1[n] ∗ h2[n]

Distributive Property

The distributive property states that

x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n]

This property implies that if two systems with impulse response h1[n] and h2[n] are connected
in parallel as shown in figure 3.2(c), the equivalent system will have an impulse response equal
to the summation of h1[n] and h2[n].

heq[n] = h1[n] + h2[n]
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Figure. 3.2: Interpretation of Convolution properties from a system point of view.

System Response From Difference Equation
Another way to find the response of a system to an input is solving difference equations. In
this section, we’ll discuss briefly about a family of linear time invariant systems described by
an input-output relation called a difference equation with constant coefficients. You
can think of a difference equation ’the discrete version’ of a differential equation.
A causal, linear, time-invariant system can be described by a difference equation having the
following general form:

y[n] + a1y[n− 1] + ...+ aNy[n−N ] = b0x[n] + b1x[n− 1] + ...+ bMx[n−M ]

where a1, ..., aN and b0, ..., bM are the coefficients of the difference equation. The above
equation can be written as:

y[n] = −
N∑
i=1

aiy[n− i] +
M∑
k=0

bkx[n− k]

Notice that y[n] is the current output, which depends on the past output samples y[n −
1], ..., y[n−N ], the current input sample x[n], and the past input samples, x[n−1], ...x[n−M ].
Notice that in this equation the coefficient of y[n] is 1. We’ll see an example on how to solve
a difference equation using MATLAB.
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Correlation
A mathematical operation that closely resembles convolution is correlation. Correlation is
computed to measure the degree to which two signals are similar. Correlation is used in
radar, active sonar applications and in digital communication system. Suppose that we have
two real signal sequences x[n] and y[n] each with finite energy. The cross-correlation of x[n]
and y[n] is a sequence rxy[l] which is defined as:

rxy[l] =
∞∑

n=−∞

x[n]y[n− l]

or equivalently, as

rxy[l] =
∞∑

n=−∞

x[n+ l]y[n]

The index l is the (time) shift (or lag) parameters and the subscripts xy on the cross-
correlation sequence rxy[l] indicate the sequences being correlated. It can easily be checked
that

rxy[l] = x[l] ∗ y[−l]
Cross correlation is simply the convolution of one signal with folded version of another. This
makes cross-correlation a non-commutative operation.
A distinct peak in the cross-correlation function indicates that the two signals are matched
for that particular time shift. This has important applications in signal detection and system
identification.
In the special case where y[n] = x[n], we have the autocorrelation of x[n] which is defined as
the sequence:

rxx[l] =
∞∑

n=−∞

x[n]x[n− l]

Autocorrelation function of a periodic signal is periodic. Autocorrelation can be used to
detect a noisy periodic signal, estimate the impulse response of system and find the period
of a periodic signal etc.

PRELAB TASKS
• Decompose the signal into impulse sequences: x[n] = {1,4,9, 16

↑
, 25}

• Is time invariant property a necessary condition to determine the output of a
system using convolution sum defined in part 1? Explain why.

• If y[n] = x[n]∗h[n] what is the relationship between the time index vector of y[n]
and those of x[n] and h[n]? Give an example.

• Compute cross-correlation of x[n] = {1,2,2
↑
} and y[n] = {1,0

↑
,1}. Make a list of

five applications of corrletaion in signal Processing and communication system.
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Part 2
Discrete Time System Response using

MATLAB/OCTAVE

• Convolution in MATLAB/OCTAVE

• Verification of Convolution Properties in MATLAB/OCTAVE

• Solving Difference Equation in MATLAB/OCTAVE

• Applications of Correlation

• Functions to use: stem(), conv(), min(), max(), xcorr(), randn()

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this part of our lab, we’ll show how to compute convolution sum of two sequences
using conv function and verify the properties of convolution in MATLAB/OCTAVE. We’ll
also solve a difference equation using two different approach and finally we’ll how to apply
the concept of correlation in signal processing.
First we’ll discuss how can we compute convolution sum of two discrete sequences using
conv() function. w = conv(a,b) returns the convolution of vectors a and b. However, conv()
function does not provide any information about the time index of the output signals. So
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the time index vector of the sum is to be derived from the signals to be convolved. Recall
that the lowest time index of the convolution is the sum of the lowest time index of the
individual signals. The same is applicable in case of the highest time index of the sum. So
along with the signals, we have to provide their individual time index vectors. For example,
if a signal is given by: x[n] = {1,1,0

↑
,1,1}, the corresponding time index vector is nx = [-

2,-1,0,1,2](Recall that, the d
↑
enotes the origin). Similarly, if there is another signal h[n] =

{1,-2,-3,4
↑
} the corresponding index vector is nh = [-3,-2,-1,0]. So the convolution of x[n] and

h[n] will have the time index vector n = (−2− 3) : (2 + 0) = −5 : 2, where (:) indicates the
colon operator of MATLAB/OCTAVE. At first we’ll write a MATLAB/OCTAVE function
which will take two signals along with their time index vectors and return the convolution
sum with its time index.

Listing 1: convolution_sum Function
1 function [y,k] = convolution_sum(nx, x, nh, h)
2
3 % input to the function
4 % nx is the index vector of x
5 % x is the first signal (input signal)
6 % nh is the index vector y
7 % h is the second signal (impulse response)
8
9 % output to the function
10 % y is the convoluted output signal
11 % k is the index vector of y
12
13 kmin = min(nx)+min(nh); % lowest time index of the convolution sum
14 ... is the sum of the lowest time indices of the two
15 ... signals to be convolved.
16 kmax = max(nx)+max(nh); % same as the kmin
17
18 k = kmin:kmax; % index vector k
19 y = conv(x,h); % convolution of x and h
20 end

Then we’ll call that function to compute the convolution sum of any two discrete time
signals. For example we’ll compute the convolution sum of signals mentioned earlier: x[n] =
{1,1,0

↑
,1,1} and h[n] = {1,-2,-3,4

↑
}.

Listing 2: Calculating convolution using the function convolution_sum
1 clc;
2 clear all;
3 close all;
4
5
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6 x = [1, 1, 0, 1, 1]; %first signal
7 nx = [−2, −1, 0, 1, 2]; %time index of signal x
8
9 h = [1, −2, −3, 4]; % second signal
10 nh = [−3, −2, −1, 0]; % time index of signal h
11
12 % now call the function to compute convolution
13 [y, n] = convolution_sum(nx, x, nh, h);
14
15 %displaying the output signal
16 stem(n,y, 'Linewidth', 2);

Now we’ll verify the properties of convolution. To verify commutative property, we’ll take
x[n] and h[n] again. First we’ll compute x[n] ∗ h[n] and then calculate h[n] ∗ x[n]. Plotting
the two output results will verify that these two are equal i.e. x[n]∗h[n] = h[n]∗x[n]. Hence,
convolution satisfies commutative property.

Listing 3: Verifying commutative property
1 clc;
2 close all;
3 clear all;
4
5 x = [1, 1, 0, 1, 1]; %first signal
6 nx = [−2, −1, 0, 1, 2]; %time index of signal x
7
8 h = [1, −2, −3, 4]; % second signal
9 nh = [−3, −2, −1, 0]; % time index of signal h
10
11 % now call the function to compute convolution x*h
12 [y, n] = convolution_sum(nx, x, nh, h);
13
14 % again call the function to compute h*x
15 [z, k] = convolution_sum(nh, h, nx, x);
16
17 %displaying the results
18 subplot(211)
19 stem(n, y, 'Linewidth', 2);
20 subplot(212)
21 stem(k, z, 'Linewidth', 2);

Alternatively you can calculate y[n]− z[k] to see that the result will be a zero vector. We’ll
next verify the distributive property. Verification of associative property will be left as an
exercise! We’ll take three signals x[n], h1[n] and h2[n]. First we’ll compute y[n] = x[n] ∗
(h1[n] + h2[n] and then we’ll compute p[n] = x[n] ∗ h1[n] + x[n] ∗ h2[n]. Finally we’ll show
that y[n] = p[n]. Here to add the signals we’ll need sigadd function from Lab week 2.
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Listing 4: sigadd Function
1 function [y,n] = sigadd(n1, x1, n2, x2)
2
3 % In order to add two signals, we need to
4 % make their length equal by padding zeros otherwise dimension mismatch
5 % will occur
6 %n1 = index vector of signal x1
7 %n2 = index vector of signal x2
8 %x1 = signal 1
9 %x2 = signal 2
10
11 n = min(min(n1),min(n2)):max(max(n1),max(max(n2))); % Defining the index
12 %vector for the output signal. For example if n1 = −3:2 and n2 = 0:4
13 % then n will run from −3 to 4. So we need to define 'n' from the minimum
14 % of individual minimum of n1 and n2. The same goes for the maximum.
15 y1 = zeros(1, length(n)); %initializing two vectors to store
16 y2 = y1; ... the zero padded signals
17 %y1((find(n>=n1(1))&(n<=n1(end)))==1) = x1; % The idea is that if min(n1)<=n

<=max(n1)
18 %y2((find(n>=n2(1))&(n<=n2(end)))==1) = x2; ... then y1 = x1(y2=x2).
19 y1 (((n>=min(n1)) & (n<=max(n1)))) = x1;
20 y2 (((n>=min(n2)) & (n<=max(n2)))) = x2;
21 y = y1+y2;
22
23 end

Listing 5: Verifying distributive property Function
1 clc;
2 clear all;
3 close all;
4
5 % verifying distributive law
6 % x*(h1+h2) = x*h1+x*h2
7
8 nx = −2:0; % index for x
9 x = [1,2,3]; % signal x
10 nh1 = −3:2; % index for h1
11 h1 = nh1.^2; % signal h1 = n^2
12 nh2 = 0:3; % index for h2
13 h2 = nh2+2; % signal h2 = n+2
14
15 % first calculate y = h1+h2 using sigadd function
16 [y, ny] = sigadd(nh1, h1, nh2, h2);
17
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18 %now calculate z= x*y = x*(h1+h2)
19 [z,k] = convolution_sum(nx, x, ny, y);
20
21 % now we'll calculate x*h1+x*h2
22 % p1 = x*h1
23 [p1, np1] = convolution_sum(nx, x, nh1, h1);
24 % p2 = x*h2
25 [p2, np2] = convolution_sum(nx, x, nh2, h2);
26 % finally p = p1+p2 = x*h1+x*h2
27 [p, np] = sigadd(np1, p1, np2, p2);
28
29 %displaying the results to show z = p
30 subplot(211)
31 stem(k,z, Linewidth, 2);
32 subplot(212)
33 stem(np, p, Linewidth, 2);

Now we’ll solve a difference equation using MATLAB/OCTAVE. While solving a difference
equation we’ll require initial conditions. However, as we’re considering only causal linear
systems, we’ll assume that values of signal for negative time indices are zero. For example,
consider a difference equation, y[n] − y[n − 1] + 0.9y[n − 2] = x[n]. Here to find impulse
response x[n] = δ[n] and y[−1] = y[−2] = 0 etc. The code for solving this difference equation
is given below:

Listing 6: Solving a difference equation to find the impulse response
1 clc;
2 clear all;
3 close all;
4
5 % y[n] − y[n−1]+0.9y[n−2] = x[n]
6 % for impulse response, h[n] − h[n−1]+0.9h[n−2] = delta[n]
7 % assuming causal system h[−1] = h[−2] = ... = 0
8 % we'll start index from i = 2, where h(1) = h[−2] = 0, h(2) = h[−1] = 0, h

(3) = h[0] etc.
9
10 n = −20:100; % time index vector
11 x = (n==0); % delta[n]
12 h = zeros(1,length(n)); %defining
13
14 for i = 3:length(n)
15 h(i) = x(i) + h(i−1) − 0.9*h(i−2);
16 end
17
18 stem(n,h);

The same solution can be obtained using MATLAB’s built in function filter. The syntax for
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filter is filter(b,a,x) where b is the vector containing coefficients of x[n], x[n-1], x[n-2] etc., a
is the vector containing the coefficients of y[n]’s and x is the input sequence. Following code
demonstrates the use of filter function.

Listing 7: Impulse response using filter function
1 clc;
2 clear all;
3 close all;
4
5
6 % y[n] − y[n−1] +0.9y[n−2] = x[n]
7 % for impulse response: h[n] − y[n−1] + 0.9y[n−2] = delta[n]
8
9 n = −20:100; % time index vector
10 b = [1]; % coefficent vector of x[n]/delta[n]
11 a = [1 −1 0.9]; % coefficient vector of y[n]/h[n]
12
13 x = (n==0); % defining the delta sequence
14
15 h = filter(b,a,x);
16
17 stem(n,h);

Thus the response of any system to any signal can be determined either by solving difference
equation or by using filter function.
In the last part of this week’s lab, we’ll discuss about correlations. Recall that cross-
correlation measures the similarity between a sequence x and shifted (lagged) copies of
another sequence y as a function of the lag. For example, consider two signals x[n] and
y[n] where y[n] = x[n-5]. If we calculate the cross-correlation of these two signals, we’ll find
that the largest spike occurs at the lag value where x[n] and y[n] match exactly and that is
at lag 5 as y[n] is resulted from a shift in time by 5 samples.

Listing 8: Example of Cross-Correlation
1 clc;
2 clear all;
3 close all;
4
5 nx = 0:15; % defining time index
6
7 x = 0.05*nx.^2; %defining a signal n
8
9 % y = x[n−5]
10 n0 = 5;
11 [y, ny] = sigshift(x, nx, n0);
12
13 % calculating cross−correlation using convolution
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14 % rxy = y[n]*x[−n]
15
16 [x, nx] = sigfold(x, nx);
17
18 [rxy, nxy] = convolution_sum(nx, x, ny, y);
19 stem(nxy, rxy);

The output is shown in figure 3.3. From the figure, we see that the largest spike indeed
occurs when the lag is 5.
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Figure. 3.3: Output of the cross-correlation of x[n] and y[n] = x[n-5]

In the above example, we calculated the cross-correlation using convolution. MATLAB/OC-
TAVE has a built in function for this purpose. xcorr(x,y) computes the cross-correlation
between two sequences given by x and y. Go through the documentation of xcorr to know
the details of this. In this case, you’ve to provide the time index vector to show the output
correctly. Autocorrelation can also be computed using xcorr. Just make y = x in the argu-
ment of the function. In the following example, we’ll compute the auto-correlation of a sin
function.

Listing 9: Example of Auto-Correlation
1 clc;
2 clear all;
3 close all;
4
5 n = −20:20; %defining the time index vector
6 x = sin(pi/5*n); %the signal
7
8 z = xcorr(x); %auto−correlation of x
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9 index = min(n)+min(n):max(n)+max(n); %corresponding time index vector of z
10 plot(index, z/max(z), 'Linewidth', 3); % showing normalized output
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Figure. 3.4: Output of the auto-correlation of a sine wave.

Similar to the cross-correlation case, the peak occurs at zero lag.

Post Lab Tasks
• Problem 1: Verify the Associative Property of Convolution using convolu-
tion_sum function.

• Problem 2: A causal, LTI system is described by the second-order difference
equation: y[n]-4y[n-1]+4y[n-2]=x[n]-x[n-1]. Determine impulse response of
the system i) by solving the difference equation and ii) by using filter function.
Show the output for n = -20:25. Show the output of the system if the input is
x[n] = (5 + 3 cos 0.2πn+ 4 sin 0.6πn)u[n].

• Problem 4: Consider an audio signal x[n] = cos 0.2πn+ 0.5 cos 0.6πn. If
the signal is reflected from a barrier and reaches the listeners, they will experience
the signal as: y[n] = x[n] + 0.1x[n− 20]. Generate 200 samples of y[n] and
show its autocorrelation. Can you find the delay between x[n] and y[n]?

• Problem 5: Given two signals, x[n] = {1
↑
,2,1,1} and y[n] = {3, 5

↑
, 8, 13, 21}.

Using these two signals show that cross-correlation is non-commutative. Show
the corresponding cross-correlation output figures.
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LAB 4:
Sampling

Objectives
The main objectives of this lab are:

• To understand the concept of Sampling and aliasing.

• To study the effect of different sample rates and verify Sampling Theorem

• To understand the concept of Upsampling and Downsampling

PART 1
Most signals encountered in real life are analog in nature such as speech, biological sig-

nals (ECG, PPG), communication signals etc. These signals must be processed for various
purposes. In a previous lab, it was mentioned that Digital Signal Processing of an analog
signal offers numerous advantages over analog processing such as, better accuracy, better
storing capability, cost efficiency and so on. Hence, in order to process these analog signals,
the signals must be converted into digital domain. Converting an analog signal into digital
one requires the process of sampling, quantization and encoding. In this lab, we’ll discuss
various concepts and issues involved in sampling of a continuous-time signal.

Figure. 4.1: Analog to Digital Converter

Sampling
Sampling is the process of converting a continuous-time signal into a discrete time one. It is
the first step in conversion of an analog signal to digital domain. One of the most popular
sampling methods is periodic sampling. In the periodic sampling operation, exact values of
the continuous-time signal at uniformly spaced discrete intervals (nTs), where Ts is sampling
period and its reciprocal, fs = 1

Ts
is the sampling frequency, are retained.

It is convenient to represent the sampling process mathematically in the two stages. The
stages consist of multiplying (modulating) the continuous time signal by an impulse train (a
series of impulses) followed by conversion of the impulse train to a sequence. The periodic
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impulse train is

s(t) =
∞∑

n=−∞

δ(t− nTs) (1)

where δ(t) is the Delta function. The product of s(t) and continuous signal, xc(t) is:

xs(t) = xc(t)s(t) (2)

Figure 4.2 shows the process of sampling using impulse train modulation. Note that, xs(t) is
still, in a sense, a continuous signal which is zero, except at integer multiples of Ts. On the
other hand, x[n] is indexed on the integer variable n.

Figure. 4.2: (a) Continuous-time Signal, xc(t) (b) Impulse Train, s(t) (c) Signal, xs(t) =
xc(t)s(t) (d) Discrete-time signal obtained from sampling.

In general, the sampling operation is not invertible, i.e. given the output x[n], it is not
possible in general to reconstruct xc(t), the input to the sampler, since many continous-time
signals can produce the same output sequences of samples. However, if a continuous time
signal is to be uniquely represented and recovered from its samples, then the signal must be
band-limited. A band-limited signal is one whose Fourier Transform is non-zero on only a
finite interval of the frequency axis. Figure 4.3 shows a band-limited signal.
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Figure. 4.2: Spectrum of a Band-limited Signal. Note that the Fourier Transform is non zero
only for frequency |f|≤B.

Further we have to realize that the samples must be sufficiently close and the Sampling Rate
must bear certain relation with the highest frequency component of the original signal. The
sampling theorem also known as Nyquist-Shannon Sampling Theorem gives us the
minimum sampling frequency for a continuous-time signal so that it can be uniquely recon-
structed from its samples. If the sampling frequency is less than this minimum value, a
phenomenon known as aliasing occurs.

Sampling Theorem:

Let xc(t) be a bandlimited signal with

Xc(f) = 0 for |f| ≥ fN .

Then xc(t) is uniquely determined by its samples x[n] = xc(nTs), n = 0,±1,±2...., if
the sampling frequency

fs =
2π

Ts
≥ 2fN .

The frequency fN is commonly referred to as the Nyquist frequency, and the frequency
2fN as the Nyquist rate.

For example, in case of a continuous time sinusoidal signal, xc(t) = cos 4000πt, signal fre-
quency is 2000Hz. So in order to reconstruct the signal uniquely from its samples, the
sampling frequency should be at least 4000Hz. Note that, fN mentioned in the sampling
theory is the maximum frequency content of the signal. Now let’s see what happens if we
sample a signal below the corresponding Nyquist rate. To discuss this, we need to consider
the signal in frequency domain.
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Figure. 4.3: Frequency-domain representation of sampling in the time domain. (a) Spectrum
of the original signal. (b) Fourier Transform of the sampling function. (c) Fourier Transform
of the sampled signal with fs > 2fN . (d) Fourier Transform of the sampled signal with
fs < 2fN

Figure 4.3 shows the frequency-domain representation of the impulse train sampling. Figure
4.3(c) shows the sampling of xc(t) with sampling frequency fs > 2fN . Here the replicas
of Xc(f) do not overlap and therefore, xc(t) can be recovered from xs(t) with an ideal low
pass filter with cut-off frequency (fc) such that fN ≤ fc ≤ (fs − fN). However, from figure
4.3(d) shows the case where the sampling frequency fs < 2fN . Here the copies of Xc(f)
overlap, so that when they are added together, Xc(f) is no longer recoverable by low-pass
filtering. In this case, the reconstructed output is related to the original continuous-time
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input through a distortion which is known as aliasing. So aliasing is an unwanted case of
sampling, where minimum condition for accurate sampling is not met. Physically, in aliasing,
signals of different frequencies become indistinguishable from each other. The high-frequency
components of the signal spectrum take the identity of the lower frequencies in the spectrum
of the sampled signal. Aliasing can be avoided by sampling the signal at a higher rate than
the Nyquist rate or by using an anti-aliasing filter which is essentially a low pass filter.

Sample Rate Conversion: Upsampling and Downsampling
In many practical applications of digital signal processing, one is faced with the problem of
changing the sampling rate of a signal, either increasing or decreasing it by some amount. For
example, in telecommunication system that transmit and recieve different types of signals,
there is a requirement to process these various signals at different rates according to the
bandwidth of the signals. The process of converting a signal from a given rate to a different
rate is called sample rate conversion. Increasing the sampling rate of an already sampled
signal is known as upsampling and decreasing the sampling rate is known as downsampling.

Upsampling

The purpose of upsampling is to manipulate a signal in order to artificially increase the
sampling rate to avoid aliasing. Upsampling a signal by an integral factor L means inserting
(L-1) zeros between successive sampled data of original signal. The input-output relation of
an upsampler system is given by:

y[n] =

{
x
[
n
L

]
, n = 0,±L,±2L, . . .

0, otherwise (3)

Downsampling

The operation of reducing the sampling rate is called downsampling. The sampling rate of a
sequence can be reduced by sampling it i.e. by defining a new sequence:

xd[n] = x[nM ] = xc(nMTs).

Downsampling a signal by a factor L means that we’ll take one sample from each group of
‘L’ samples. For example, y[n] = x[2n] represents downsampling x[n] by a factor of 2. Here
we’ll discard the odd-numbered samples in x[n] and retain the even-numbered samples. In
other words, we’ll keep one sample from every successive two samples. Figure 4.4 shows the
representation of an upsampler and downsampler.
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Figure. 4.4: (a) General System of Upsampling a signal by L (b) General system for down-
sampling a signal by M

PRELAB TASKS
• Given a continuous time signal xc(t) = sin (2000πt)+cos (4000πt)+sin (5000πt),

what is the minimum sampling frequency in Hz that satisfies Nyquist Criteria.

• If a signal xc(t) = cos (8000πt) is sampled at a frequency 2000Hz, draw the
spectrum of the i) original signal and ii) sampled signal. Write down the frequency
clearly in the spectrum.

• Let x[n] = {1,1,3,4,5,6,8
↑
,1,1,3,4} be a discrete-time version of some continuous

signal. Sketch the signal x[2n] and x[n
3
].
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Part 2
Sampling using MATLAB/OCTAVE

• Sampling and aliasing in MATLAB/OCTAVE

• Upsampling and Downsampling in MATLAB/OCTAVE

• Reconstruction of a sampled signal in MATLAB/OCTAVE

• Functions to use: stem(), plot(), subplot()

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this part of our lab, we’ll dive into the concept and issues of sampling and aliasing using
MATLAB/OCTAVE. Then we’ll show upsampling and downsampling of a signal. Finally
we’ll show how to reconstruct a signal from its samples. Let us consider a continuous-time
signal xc(t) = 10 cos (200πt). Frequency of the signal is F0 = 100 Hz and time period is
T0 = 1

100
= 0.01s. So the corresponding nyquist rate is 200Hz. At first, we’ll sample the

signal at a rate of 800Hz frequency which is much higher than nyquist rate. From figure 4.5,
it is seen that the original signal can be uniquely identified from its samples. The code for
this is given below:

Listing 1: Sampling a continuous time signal with sampling frequency 800Hz
1 clc;
2 clear all;
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3 close all;
4 % We'll sample a signal at a frequency 500 Hz
5 % xc = 10*cos(200*pi*t)
6 % Signal Frequency, Fo = 100 and Signal Period, To = 1/100
7 % Sampling Frequency, Fs = 500 and Sampling Period, Ts = 1/500
8 Fo = 100; % Signal Frequency
9 To = 1/Fo; % Signal Period
10 Fs = 500; % Sampling Frequency which is greater than Nyquist Rate
11 Ts = 1/Fs;
12
13 t = 0:To/100:3*To; % Time axis for continuous signal
14 xc = 10*cos(200*pi*t); % continuous signal
15
16 t1 = 0:Ts:3*To; % Sampled time axis
17 xs = 10*cos(200*pi*t1); % Sampled Signal
18
19 subplot(211)
20 plot(t, xc, 'Linewidth', 2); % plotting continuous−time signal
21 hold on
22 stem(t1, xs, 'Linewidth', 2); % showing the sampled values in the same plot
23 subplot(212)
24 stem(t1, xs, 'Linewidth', 2); % showing the sampled values in a separate plot
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Figure. 4.5: (a) Continuous-time signal and its samples obtained by sampling at a rate of
800Hz (b) Samples of the continuous-time signal in (a)
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From the samples of signal xc(t) the discrete time signal x[n] can be obtained by dividing the
time axis of the sampled signal i.e. figure 4.5(b) by the sampling period Ts.

Now let’s sample the signal xc(t) at a sampling frequency equal to the nyquist rate i.e. 200Hz
and the corresponding output is shown in figure 4.6. It is seen from the figure that we can
recognize the signal from its samples although this is more difficult than the previous case
where the sampling rate is higher than this. However, the trend in the signal’s behaviour can
be recognized from its samples. In fact, the samples only capture the extremes of each period
of the cosine oscillation. This is the significance of of twice the highest frequency of
the signal value for sampling frequency. We can say that, the samples are just enough to
capture the signal’s oscillation if it is sampled exactly at the nyquist rate.

Listing 2: Sampling a continuous time signal with sampling frequency 200Hz
1 clc;
2 clear all;
3 close all;
4
5 % We'll sample a signal at a frequency 500 Hz
6 % xc = 10*cos(200*pi*t)
7 % Signal Frequency, Fo = 100 and Signal Period, To = 1/100
8 % Sampling Frequency, Fs = 500 and Sampling Period, Ts = 1/500
9
10 Fo = 100; % Signal Frequency
11 To = 1/Fo; % Signal Period
12 Fs = 200; % Sampling Frequency which is greater than Nyquist Rate
13 Ts = 1/Fs;
14
15 t = 0:To/100:3*To; % Time axis for continuous signal
16 xc = 10*cos(200*pi*t); % continuous signal
17
18 t1 = 0:Ts:3*To; % Sampled time axis
19 xs = 10*cos(200*pi*t1); % Sampled Signal
20
21 subplot(211)
22 plot(t, xc, 'Linewidth', 2); % plotting continuous−time signal
23 hold on
24
25 stem(t1, xs, 'Linewidth', 2); % showing the sampled values in the same plot
26
27 subplot(212)
28 stem(t1, xs, 'Linewidth', 2); % showing the sampled values in a separate plot

50



0 0.005 0.01 0.015 0.02 0.025 0.03

-10

-5

0

5

10

-10

-5

0

5

10

0 0.005 0.01 0.015 0.02 0.025 0.03

Figure. 4.6: (a) Continuous-time signal and its sample obtained by sampling at a rate of 200
Hz (b) Samples of the continuous-time signal in (a)

Finally we’ll sample the signal at a frequency lower than the nyquist rate and we’ll observe
aliasing. If the sample frequency drops too low, the samples seem to come from a different
signal. For example, if the signal xc(t) = 10 cos (200πt) is sampled at a frequency 150Hz, the
resulting discrete time signal is

x[n] = x(nTs) = 10 cos(200πnTs)

= 10 cos
(
200πn

1

150

)
= 10 cos

(4πn
3

)
= 10 cos

(2πn
3

)
= 10 cos

(
2π
n

3

)
So the sampled signal will be an alias of another signal xac(t) = 10 cos(100πt). Let us verify
the result from MATLAB Figures.

Listing 3: Aliasing occurs when the signal is sampled below the Nyquist Rate
1 clc;
2 clear all;
3 close all;
4
5 % We'll sample a signal at a frequency 500 Hz
6 % xc = 10*cos(200*pi*t)
7 % Signal Frequency, Fo = 100 and Signal Period, To = 1/100
8 % Sampling Frequency, Fs = 500 and Sampling Period, Ts = 1/500
9
10 Fo = 100; % Signal Frequency
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11 To = 1/Fo; % Signal Period
12 Fo1 = 50; % Aliased Frequency
13 To1 = 1/Fo1; % Aliased signal period
14 Fs = 150; % Sampling Frequency which is greater than Nyquist Rate
15 Ts = 1/Fs;
16
17 %% continuous signal
18 t = 0:To/100:3*To; % Time axis for continuous signal
19 xc = 10*cos(200*pi*t); % continuous signal
20
21 %% sampled signal
22 t1 = 0:Ts:3*To; % Sampled time axis
23 xs = 10*cos(200*pi*t1); % Sampled Signal
24
25 %% aliased continuous signal
26 t2 = 0:To1/100:3*To; % Time axis for aliased signal
27 xc2 = 10*cos(100*pi*t2); % Aliased Signal
28
29 %% plotting all the signals together
30 plot(t, xc, 'Linewidth', 2); % plotting continuous−time signal
31 hold on
32 plot(t2, xc2,'g', 'Linewidth', 2); % plotting the aliased signal
33 stem(t1, xs, 'r','filled', 'Linewidth', 2); % showing the sampled values in

the same plot
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Figure. 4.7: Both the signal xc(t) = 10 cos (200πt) and xc2(t) = 10 ∗ cos(100πt) go through
the samples when xc(t) is sampled below the Nyquist Rate. So xc(t) and xc2 are alias signals.
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So we see that when a signal is sampled below the Nyquist rate, it cannot be reconstructed
uniquely as there exists another signal with those samples.
Now we’ll write two functions that will perform upsampling by a factor L and downsampling
by a factor M on an already sampled signal.

Listing 4: Function to perform upsampling
1 function [xup, nup] = upsampling(x, n, L)
2
3 % L is the upsampling factor
4 % x is the original sampled signal
5 % n is the original index vector
6
7 nup = n(1)*L:n(end)*L; % Upsampled time index
8 xup = zeros(1, length(nup)); % initializing the upsampled signal
9 xup(1:L:length(nup)) = x; % Insert L−1 zeros between two successive samples.
10
11 end

Listing 5: Function to perform downsampling
1 function [xdown, ndown] = downsampling(x, n, M)
2
3 % M downsampling factor
4 % x input sampled signal
5 % n is the index vector of original sampled signal
6
7 pos = (find(mod(n,M) == 0)); % Finding the position of the index which is
8 ... the multiple of M
9 xdown = x(pos); % taking samples at the indices which is a multiple of M
10 ... i.e. take one sample from every M samples.
11 ndown = n(pos)/M; % downsampled time index vector
12 end

] Let’s consider an already sampled discrete signal x[n] = sin (0.7n) defined for −10 ≤ n ≤ 10.
We’ll upsample x[n] by a factor of 3 and downsample it by a factor of 2. Let’s see what
happens.

Listing 6: Upsample a signal by a factor of 3 and downsample it by a factor of 2
1 close all;
2 clear all;
3 clc;
4
5 n=−10:10; % index vector of original signal
6 x=sin(0.7*n); % original samples
7 subplot(311),
8 stem(n,x, 'Linewidth', 2);
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9 title('Original Signal')
10
11 %% Up−sampling
12 L=3; %Scaling factor
13 [xup, nup] = upsampling(x, n, L);
14 subplot(312)
15 stem(nup,xup, 'Linewidth',2);
16 title(['Up−sampled Signal by ',num2str(L)]);
17
18 %% Down−sampling
19 M = 2;
20 [xdown, ndown] = downsampling(x,n,M);
21 subplot(313)
22 stem(ndown, xdown, 'Linewidth', 2);
23 title(['Down−sampled Signal by ',num2str(M)]);

Figure 4.8 shows the output of this code.
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Figure. 4.8: (a) Original Sample (b) Upsampled signal by a factor of 3 (c) Downsampled
signal by a factor of 2.

From figure 4.8 we see that when the signal is upsampled by a factor of 3, two zeros are
inserted between successive samples and the total number of samples gets increased. On the
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contrary, when the signal is downsampled by a factor of 2, one sample from two successive
samples are taken and shown in 4.8(c) i.e. the original sampling frequency is halved. In other
words, here we’ve taken only the even numbered samples and discarded the odd-numbered
ones. This is how the rate of sampling can be converted by upsampling or downsampling.
For the last topic of our lab week 4, we’ll see how to reconstruct a signal from its samples.
For this, we need a bit of theoretical background. In order to reconstruct a signal from its
samples, we need to pass the samples through a low pass filter whose cut-off frequency(fc)
satisfies the condition: fN ≤ fc ≤ (fs − fN). In time domain this implies multiplying the
samples by an interpolation function or sinc function. In other word, if we consider low pass
filter (LPF) a system, the output of the system will be the convolution sum of the samples
and the impulse response (hr(t)) of the LPF. hr(t) for an LPF with cutoff frequency π

Ts
is

given by:

hr(t) =
sin
(
πt
Ts

)
πt
Ts

(4)

This impulse response is shown in figure (4.9).
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Figure. 4.9: Impulse Response of an ideal Low Pass Filter.

The final reconstructed signal xr(t) which is the convolution sum of x[n] and hr(t) is given
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by the formula:

xr(t) =
∞∑

n=−∞

x[n]
sin
(
π(t−nTs)

Ts

)
π(t−nTs)

Ts

(5)

We’ll use equation (5) to reconstruct a signal from its samples. Here we’re considering
sampling frequency higher than the nyquist rate so that we can properly reconstruct the
original signal.

Listing 7: Reconstruction of a signal from its samples
1 clc;
2 close all;
3 clear all;
4
5
6 % First we'll sample the signal at a higher rate than
7 % Nyquist Rate
8 % xc(t) = 5*cos(200*pi*t)
9 % Signal Frequency, Fo = 100 and period, To = 1/100
10 % Sampling Frequency, Fs = 800 and period, Ts = 1/800
11
12 Fo = 100; % signal frequency
13 To = 1/Fo; % signal period
14 Fs = 800; % sampling frequency
15 Ts = 1/Fs; % sampling period
16
17 tc = 0:To/100:3*To; % defining time axis for xc upto 3 cycles
18 xc = 5*cos(200*pi*tc); % constructing the continuous−time signal
19
20 ts = 0:Ts:3*To; % sampled the time axis a rate Fs
21 xs = 5*cos(200*pi*ts); % sampled signal at a frequency Fs
22 N = length(ts); % number of samples
23
24 %% Reconstruction by using the formula:
25 % xr(t) = sum over n = 0...., N−1 : x(nT)*sin(pi*(t−nT)/T)/(pi*(t−nT)/T)
26 % Here sin(pi*(t−nT)/T)/(pi*(t−nT)/T) = sinc((pi*(t−nT))/T)
27
28 xr = zeros(1, length(tc)); % initialize the reconstructed signal which is the
29 ... same length as

continuous−time
axis

30 sinc_fun = zeros(N, length(tc)); % initializing the interpolation function or
sinc function

31
32 for t = 1:length(tc)
33 for n = 0:N−1
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34 %this line computes the convolution of xr and sinc_fun
35 xr(t) = xr(t) + xs(n+1)*sin(pi*(tc(t)−n*Ts)/Ts)/(pi*(tc(t)−n*Ts)/

Ts);
36
37 end

38 end
39
40
41 %% plot the results
42
43 plot(tc, xc);
44 hold on
45 stem(ts, xs);
46 hold on
47 plot(tc, xr);

If you run the above code, you can see the original signal, its samples and reconstructed
signal in a single plot.

POST LAB TASKS
1. Consider x(t) = 10 cos (120πt) + 5 sin (100πt+ 30°) + 4 sin (150πt+ 45°).

Sample the signal for i) Fs = 4 ∗ Fo, ii) Fs = 2 ∗ Fo and iii) Fs = F0 where
Fo is the maximum frequency content of x(t). Show the original signal and its
samples in one figure for 3 cycles.

2. Consider a signal x(t) = 10 cos (250πt+ 60°) + 5 sin (200πt+ 75°). Convert
the signal into a sequence x[n] for −10 ≤ n ≤ 10 by choosing an appropriate
sampling frequency. Upsample x[n] by a factor of 3 and downsample the signal
by a factor of 4. Show i) original signal, ii) sampled signal, iii) discrete signal,
iv) upsampled signal and v) final output.

3. Consider x(t) = 1
2
sin(14πt) + 1

3
sin(18πt) + 1

5
sin(24πt) + 1

7
sin(30πt). Sample

the signal on the interval 0 ≤ t ≤ 2 at i) Fs = 5Fo and ii) Fs = 1.5Fo. Where Fo
is the maximum frequency content of x(t). Reconstruct the signal in each case
from its samples. What is the alias signal’s time domain expression in case (ii).

4. There is another way to reconstruct the original signal by using interpolation
method. MATLAB has a built-in function interp1() for this purpose. Write a
MATLAB Code using this function to reconstruct the signal of problem 3.
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LAB 5:
Frequency Analysis of Discrete-time Signals

Objectives
The main objectives of this lab are:

• To be familiar with the concept of Discrete time fourier transform (DTFT) and discrete
fourier transform (DFT)

• To understand signal processing in frequency domain

PART 1
The Fourier Transform is one of the several mathematical tool that is useful in the anal-

ysis and design of LTI systems. Another is the Fourier Series. These are basically signal
representations just like the unit impulse decomposition covered in a previous lab. However,
in these representations, a signal is represented in terms of sinusoidal or complex exponential
components. With such a decomposition, a signal is said to be represented in the frequency
domain. For a class of periodic signal, this decomposition is called Fourier Series and in
case of aperiodic signal, it is called Fourier Transform. These decompositions are very im-
portant in analyzing an LTI system because the response of an LTI system to sinusoidal input
is also a sinusoid of the same frequency with different amplitude and phase. Furthermore,
the linearity property of an LTI system implies that a linear sum of sinusoidal components
at the input produces a similar sum of sinusoids at the output with different amplitudes
and phases. In this lab, we will discuss how to transform a signal from its time domain to
frequency domain representation and also see how an LTI system’s output can be obtained
in frequency domain.

Discrete Time Fourier Series
Consider a periodic sequence x[n] with period N, that is x[n+N ] = x[n] for all n. The Fourier
Series representation for x[n] consists of N harmonically related exponential functions:

e
j2πkn
N , k = 0, 1, 2, ....,N − 1

And the series is expressed as:

x[n] =
N−1∑
k=0

cke
j2πkn
N (1)

where {ck} are the coefficients in this representation. In deriving the expression for ck’s, the
following property of complex exponentials are used:

N−1∑
n=0

ej2πkn/N =

{
N, k = 0,±N,±2N, . . .
0, otherwise (2)
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The Fourier series coefficient, cl can be obtained by multiplying both sides of equation (1)
by the exponential e

−j2πln
N and summing the product from n = 0 to N-1. Finally, we get

cl =
1

N

N−1∑
n=0

x[n]e
−j2πln
N , l = 0, 1, ....N − 1 (3)

Equation (1) is called the synthesis and (2) is called the analysis equation. Note that ck+N =
ck that is, {ck} is a periodic sequence with fundamental period N.

Discrete Time Fourier Transform
The Fourier Transform of a finite-energy discrete time signal x[n] is defined as:

X(ω) =
n=∞∑
n=−∞

x[n]e−jωn (4)

Physically, X(Ω) represents the frequency content of the signal x[n]. Here x[n] must be
absolutely summable for the sum in equation (4) to converge.

∞∑
n=−∞

|x[n]| <∞ (5)

Indeed, equation (5) is the sufficient condition for the existence of the discrete-time Fourier
transform. Now in equation (4), X(ω) is a periodic function with period 2π(Verify this!).
This property is just a consequence of the fact that the frequency range for any discrete-time
signal is limited to (−π, π) or (0, 2π). The spectrum X(ω) is, in general, a complex-valued
function of frequency. It may be expressed as

X(ω) = |X(ω)|ejΘ(ω) (6)

where |X(ω)| is the magnitude spectrum and Θ(ω) = ∠X(ω) is the phase spectrum.
The inverse DTFT (IDTFT) equation is used to reconstruct the signal from its frequency
spectrum X(ω) and given by:

x[n] =
1

2π

∫ π

−π
X(ω)ejωndω (7)

As X(ω) is periodic with period 2π, any interval of length 2π can be used to determine the
integral given in equation(7).

Discrete Fourier Transform
Although DTFT gives the frequency component of a signal, it is still continuous over fre-
quency which is unsuitable for DSP. In addition, an infinite number of time domain samples
of the signal x[n] are required to compute DTFT which is also not feasible. In case of a finite
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length sequence x[n], 0 ≤ n ≤ L − 1, only L samples of X(ω) over its period are sufficient
to determine x[n] and hence X(ω). This leads to the concept of discrete Fourier Transform
(DFT) which is obtained by periodic sampling of X(ω).
Although the L-point DFT is sufficient to uniquely represent the sequence x[n] in the fre-
quency domain, however, it does not provide sufficient detail to yield a good picture of the
spectral characteristics of x[n]. In order to obtain a better spectral picture, we often compute
a higher point (N-point) DFT where N > L. This is called N-point DFT. While N can
be any positive integer, a power of two is usually chosen i.e. 128, 256, 512, etc. The
formulas for the Discrete-Fourier Transform(DFT) and Inverse Discrete Fourier Transform
(IDFT) are

DFT: X[k] =
N−1∑
n=0

x[n]e
−j2πkn

N , k = 0, 1, 2, ....,N − 1 (8)

IDFT: x[n] =
1

N

N−1∑
k=0

X[k]e
j2πkn
N , n = 0,1,2....,N − 1 (9)

The formulas for DFT and IDFT given by equation (8) and 9 may be expressed as:

DFT: X[k] =
N−1∑
n=0

x[n]W kn
N , k = 0, 1, 2, ....,N − 1 (10)

IDFT: x[n] =
1

N

N−1∑
k=0

X[k]W−kn
N , n = 0,1,2....,N − 1 (11)

where, WN = e−
j2π
N , which is an N th root of unity. Equation 10 can be expressed in the

matrix form as:
XN = WNxN (12)

where xN is the column matrix containing the elements of the sequence x[n] and XN is the
N-point vector containing the frequency samples. Mathematically xN and XN is given by:

xN =


x(0)
x(1)
.
.
.

x(N − 1)

 , XN =


X(0)
X(1)
.
.
.

X(N − 1)


So to match the dimension for matrix multiplication in equation (12), WN must be an N×N
matrix and given by:

WN =


1 1 1 · · · 1
1 WN W 2

N · · · WN−1
N

W 2
N W 4

N · · · W
2(N−1)
N

...
...

... · · · : ...
1 WN−1

N W
2(N−1
N · · · W

(N−1)(N−1)
N

 (13)
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The IDFT equation in equation(11) can also be represented by:

xN = W−1
N XN =

1

N
W∗

NXN (14)

where W ∗
N denotes the complex conjugate of the matrix WN .

Convolution Using DFT
In continuous time signal, multiplication of two signals in frequency domain implies convo-
lution in time domain. However, in case of DFT, multiplication of two signals in frequency
domain corresponds to circular convolution in time domain. Circular convolution of two
DT signals or sequences x1[n] and x2[n] is defined by the following formula:

y[m] =
N−1∑
n=0

x1[n]x2([m− n])N , m = 0, 1, ..., N − 1 (15)

The basic difference between linear and circular convolution is that, in circular convolution,
the folding and shifting(rotating) operations are performed in a circular fashion by computing
the index of one of the sequences modulo N. In linear convolution, there is no modulo N
operation. This will be discussed broadly in theory. However, linear convolution (the type of
convolution sum we defined in Lab week 3) can also be computed by multiplying two signals
in frequency domain. The steps for computing linear convolution, y[n] = x[n] ∗ h[n] using
DFT is given below. We’ll only mention the procedure. We won’t go into the detailed theory.

1. Let N = length(x)+length(h)-1. Pad each of the original sequences, x[n] and h[n] with
zeros until they are both length N.

2. Compute N-point DFT of each padded sequences, X[k] and H[k].

3. Compute Inverse DFT of the product Y[k] = X[k]H[k]. This will be equivalent to
y[n] = x[n] ∗ h[n].

Fast Fourier Transform(FFT)
Fast Fourier Transform(FFT) is a method for computing DFT and IDFT efficiently. In MAT-
LAB there’s a built in function for computing FFT. We’ll look into the syntax of FFT in the
coding part of this Lab and learn about FFT algorithms in EEE 3217.
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PRELAB TASKS
1. Determine the Discrete time Fourier Series spectrum of x[n] where x[n] is periodic

with period N = 4 and x[n] = 1
↑
,0,1,0. Draw the magnitude and phase spectra.

2. Compute and draw the magnitude and phase spectra of x[n] = u[n] - u[n-4].

3. Using DFT and Inverse DFT, compute the circular convolution of x1[n] =
{1
↑
, 2, 3} and x2[n] = {4

↑
, 3, 1}.

4. Using DFT and Inverse DFT, compute the linear convolution for the signals given
in previous problem.
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Part 2
Frequency Analysis of DT Signals using

MATLAB/OCTAVE

• Computing DTFS, DTFT and DFT in MATLAB/OCTAVE

• Computing DFT using FFT in MATLAB/OCTAVE

• Frequency Analysis of a signal using DFT in MATLAB/OCTAVE

• Functions to use: stem(), fft(), fftshift(), abs(), dftmtx(), angle(), ifft()

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this part of our lab, we’ll implement the ideas covered in Lab in MATLAB to compute
various types of frequency transformation and their spectra. However, after introducing the
concept and syntax of fft we’ll mostly use this function to compute DFT of a signal. So, the
code for DTFS, DTFT and DFT are simply to give an idea how these things work. At first,
we’ll implement equation 3 to compute discrete time Fourier Series (DTFS) of a periodic sig-
nal. For this we’ll first generate a periodic rectangular pulse and then compute its spectrum.
The corresponding analysis and synthesis code is given below. dtfs_analysis function takes
any periodic discrete-time signal and decomposes it into fourier series coefficients.

Listing 1: dtfs_analysis function to compute Discrete-time Fourier Series coefficient.
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1 function [K, C] = dtfs_analysis(m, n, x)
2
3 % m = how many periods of the fourier series coefficient
4 % are to observed
5 % n = index vector of x
6 % x = periodic signal
7
8 N = length(x); % Total number of data points
9 Nc = m*N; % Total no. of coefficients
10
11 if mod(Nc,2)== 0
12 k = −Nc/2:Nc/2−1; % Determining the range of ck's
13 else
14 k = −(Nc−1)/2:(Nc−1)/2;
15 end
16
17 C = zeros(1,length(k)); %Initializing the fourier coefficients
18
19 for i1 = 1:length(k) % this loop is for computing all the ck's
20 for i2 = 1:length(x) % this loop is for the sum in equation (3)
21 % ck = 1/N*sum(x[n]exp(−i2*pi*kn/N)) from n = 0 to N−1
22 C(i1)= C(i1)+1/N*x(i2)*exp(−i*2*pi*k(i1)*n(i2)/N);
23 end
24 end
25 K = k;
26 end

We’ll use this function to decompose a periodic rectangular pulse with period 1ms into its
fourier series coefficients. Finally we’ll reconstruct the original signal using these coefficients.

Listing 2: Discrete-Time Fourier Series Analysis and synthesis of a rectangular periodic signal
1 clc;
2 clear all;
3 close all;
4
5 % Here we'll compute DTFS of a periodic rectangular pulse
6 % So, first we'll need to generate the rectangular pulse
7
8 Fs = 100e3; %Sampling frequency
9 dt = 1/Fs; %Sampling period
10
11 % Generating the rectangular pulse train
12
13 T = 1e−3; %Period of the pulse train
14 D = .1; %duty cycle
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15 PW = D*T; %Pulse width
16 f = 1/T; %Analog frequency
17 t = −T/2:dt:T/2; %Time interval for a period
18
19 n = t/dt; %Index for data points for a period
20 L = PW/dt; %Data points in the high time
21 x = zeros(1,length(t)); %Initializing a single rectangular pulse
22 x(find(abs(n)<=L/2))=1.1; %Generation of a single rectangular pulse
23
24 % Visualizing the rectangular pulse
25 figure(1)
26 plot(t,x);
27 title('Original Continuous Rectangular Pulse');
28 xlabel('Time (seconds)');
29 ylabel('x(t)');
30 figure(2)
31 stem (n,x);
32 title('Sampled Rectangular Pulse');
33 xlabel('Index (n)');
34 ylabel('x(n)');
35
36 %% Fourier Series Analysis
37 N = length(x); % no. of data points
38 m = 1; % number of periods to be observed of cks
39
40 [k, c] = dtfs_analysis(m, n, x);
41
42 figure (3)
43 subplot(211)
44 stem(k, abs(c));
45 subplot(212)
46 stem(k, angle(c));
47
48 %% Reconstruction of signal from Fourier coefficients
49
50 t_remax = T; % Maximum time upto which the original...
51 ... signal will be reconstructed
52 t_re = −t_remax:dt:t_remax; % time axis for reconstructed signal
53 n_re = t_re/dt; % index vector for the reconstructed signal
54
55 x_re = zeros(1, length(n_re)); % initializing the reconstructed signal
56
57 % To compute x_re, we need to compute the sum:
58 % x[n] = sum (ck*exp(j*2*pi*kn/N)) from k = 0 to N−1
59 % for each n
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60
61 for i1 = 1:length(k)
62 for i2 = 1:length(x_re)
63 x_re(i2) = x_re(i2)+c(i1)*exp(1i*2*pi*k(i1)*n_re(i2)/N);
64 end
65 end
66
67 figure(4)
68 subplot(211)
69 plot(n_re, real(x_re));
70 subplot(212)
71 plot(t_re, real(x_re));

The output of the code is given in figure 5.1:

Figure. 5.1: (a) Original continuous Signal (b) Sampled Signal (c) Fourier Series coefficients
(d) Reconstructed signal from its fourier series coefficients.
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By varying t_remax in the code (reconstruction part) and observed that periodic repi-
tion is obtained. You can also observed the periodicity of |ck| by changing the total number
of coefficients by varying m in the code(analysis part). Note that if m < 1, the reconstructed
signal will not be the same as original signal (Verify this!).
Now we’ll look into the code to calculate DTFT of an aperiodic finite energy signal from first
principle i.e by using equation(4). Here, x[n] = {1,2

↑
,3,4,5}. The code to compute DTFT

from first principle is:

Listing 3: Discrete-Time Fourier Transfrom of an aperiodic signal
1 clc;
2 clear all;
3 close all;
4
5 n = −1:3; % time index for the signal
6 x = 1:5; % signal
7
8 M = 501; % Number of points in digital frequency grid
9 w = linspace(−pi, pi, M); % Defining digital frequency grid
10 X = zeros(1, length(w)); % Defining the spectrum vector of x
11
12 % To find out X, we need to carry out the sum in equation (4)
13 for i1=1:M
14 for i2=1:length(x)
15 X(i1)=X(i1)+x(i2)*exp(−1i*w(i1)*n(i2));
16 end
17 end

The output spectrum of the signal is given below:
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Figure. 5.2: Magnitude and Phase Spectrum of x[n] = {1,2
↑
,3,4,5}
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As previously mentioned, DTFT is continuous in frequency, so DFT is mainly used to
observe the frequency spectrum of any signal. First we’ll compute DFT and IDFT from
the matrix equation given in 12 and 14. Then we’ll introduce the concept and syntax of
Fast Fourier Transform (FFT) and we’ll use FFT to compute discrete Fourier transform
of a DT signal. The matrix WN given in equation(12) can be generated using MATLAB
function dftmtx(). However, we’ll not use this function instead we’ll generate the matrix
from definition given in equation(13). We’ve defined two functions named DFT and IDFT
to decompose a signal into its frequency components and then reconstructing it from its
spectrum. While calculating DFT, we’ll consider the case N ≥ L where L is the length of
the sequence and N is the number of DFT points to avoid frequency domain aliasing.

Listing 4: DFT function to compute N-point Discrete Time Fourier Transform
1 function [Xk, k] = DFT(xn, N)
2 % computes N point DFT of xn
3 % Xk = DFT coefficient array over 0<=k<=N−1
4 % xn = N−point finite duration sequence
5 % N = length of DFT
6 n = 0:N−1; % index of data sequence
7 k = 0:N−1; % index of frequency sample
8
9 L = length(xn);
10 xn = [xn zeros(1, N−L)]; % zero padding to make xn N point
11 WN = exp(−1j*2*pi/N); % WN = e^(−j2pi/N);
12 nk = n'*k; % creates a N x N matrix of nk values
13 WN_nk = WN.^nk; % Forming the WN_nk matrix given in equation (13)
14 Xk = xn*WN_nk; % Computes the matrix multiplication in equation (12)
15
16 end

Listing 5: IDFT function to reconstruct a signal from its frequency spectrum
1 function [xn, n] = IDFT(Xk, N)
2 % computes Inverse DFT from Xk
3 % Xk = DFT coefficient array over 0<=k<=N−1
4 % xn = N−point finite duration sequence over 0<=n<=N−1
5 % N = length of DFT
6 n = 0:N−1; % row vector for n
7 k = 0:N−1; % row vector for k
8
9 WN = exp(−1j*2*pi/N); % WN = e^(−j2pi/N);
10 nk = n'*k; % creates a N x N matrix of nk values
11 WN_nk = WN.^(−nk); % IDFT Matrix
12 xn = (Xk*WN_nk)/N; % Computes the matrix multiplication in equation (12)
13
14 end
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Using these two functions, we’ll compute the 5 point DFT of the sequence x[n] = {1,1,0,0,1}
and the reconstruct the original sequence using IDFT.

Listing 6: 5 point DFT and reconstruction of a sequence using DFT and IDFT respectively.
1 clc;
2 clear all;
3 close all;
4
5 x = [1, 1, 0, 0, 1];
6 N = 5;
7 [X, k] = DFT(x, N);
8 MagX = abs(X); % Magnitude Spectrum
9 PhaseX = angle(X)*180/pi; % Showing angle in degree
10 figure(1)
11 subplot(211) stem(k, MagX, 'Linewidth', 2); xlabel('k'); ylabel('Magnitude

Spectrum');
12 subplot(212) stem(k, PhaseX, 'Linewidth', 2); xlabel('k'); ylabel('Phase

Spectrum');
13 % IDFT to obtain the original signal from its DFT
14 [xn, n] = IDFT(X, N);
15 figure(2)
16 stem(n, real(xn), 'Linewidth', 2); % showing only the real part of the idft

The output of the code is given below:

0

1

2

3

M
a
g
n
it
u
d
e
 S

p
e
c
tr

u
m

0 1 2 3 4

k

-200

-150

-100

-50

0

P
h
a
s
e
 S

p
e
c
tr

u
m

 (
D

e
g
re

e
s
)

0 1 2 3 4

k

0

0.5

1
Reconstructed Signal

0 1 2 3 4

Figure. 5.3: Frequency spectrum and reconstruction of a sequence x[n] = {1,1,0,0,1} using
DFT and IDFT functions respectively.
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From this part of our lab, we’ll use fft and ifft function in MATLAB to compute the DFT
of and IDFT of a signal. Syntaxes for fft function are:

Y = fft(X)
Y = fft(X, N)

The first line computes the n-point DFT of signal X where n =length(X) and the second one
computes the N-point DFT of a signal given by the user. While plotting any fft output either
magnitude or phase, we’ll first fftshift the fft of X. fftshift(X) rearranges a Fourier transform
X by shifting the zero-frequency component to the center of the array.
In the following example, we’ll find out the frequency spectrum of a sinc function. Remember
that a sinc function is defined by the following equation:

sinc (t) =

{
sinπt
πt

t 6= 0
1 t = 0

(16)

In our example, we’ll consider x(t) = sinc(100t). First we’ll sample the signal with sampling
period 0.8333 ms and then computes its spectrum using FFT. Following is code for this
purpose:

Listing 7: Example of computing DFT of a sinc signal using fft function
1 clc;
2 clear all;
3 close all;
4
5 % Discrete Fourier Transform of a sinc function using FFT
6
7 t0 = 0.2; % duration of sinc pulse
8 ts = 8.3333e−4; % sampling period
9 t = −t0/2:ts:t0/2; % defining time variable
10 x = sinc(100*t); % sinc function
11 fs = 1/ts; % sampling frequency
12 N = 256; % Number of points DFT will be calculated
13 X = fft(x, N);
14 df = fs/N;
15 f = −fs/2:df:fs/2−df+df/2*mod(N,2);
16 subplot(311)
17 plot(t, x, 'Linewidth', 2); title('sinc Pulse'); ylabel('Amplitude'); xlabel(

't');
18 subplot(312)
19 stem(f, abs(fftshift(X)), 'Linewidth', 2); % We'll use fftshift while

plotting an fft
20 title('Magnitude Spectrum'); ylabel('|X(k)|'); xlabel('f');
21 subplot(313)
22 stem(f, angle(fftshift(X))*180/pi, 'Linewidth', 2); title('Phase Spectrum');
23 ylabel('Phase (Degrees)'); xlabel('f');
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The result is shown in the following figure.
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Figure. 5.4: Frequency spectrum of a sinc pulse.

In our next example, we’ll discuss how to compute convolution sum of two sequences in
frequency domain. It might be a good idea to review the section named Convolution Using
DFT. Here we considered two signal, x[n] = 2

↑
, 1, 2, 1 and h[n] = {1

↑
, 2, 3, 4}.

Listing 8: Convolution in frequency domain
1 clc;
2 clear all;
3 close all;
4
5 % Linear convolution using DFT
6
7 x = [2, 1, 2, 1]; % signal x
8 nx = 0:3; % index vector of x
9 h = [1, 2, 3, 4]; % signal h
10 nh = 0:3; % index vector of h
11 ny = min(nx)+min(nh):max(nx)+max(nh); % index vector of y
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12 len = length(ny);
13 % padding zero after x and h to make it of length len
14 x = [x zeros(1, len−length(x))];
15 h = [h zeros(1, len−length(h))];
16
17 X = fft(x, len); % len point DFT of x
18 H = fft(h, len); % len point DFT of h
19
20 Y = X.*H; % Y is the product of X and H
21 y = ifft(Y); % y in time domain

The result for convolution is given by: y[n] = {2
↑
, 5, 10, 16, 12, 11, 4}. You can verify the

result using convolution_sum from lab week 3. In a similar way, correlation can also be
calculated using fft.
Finally, we’ll explore the application of fft to observe modulation and demodulation of a
message signal in frequency domain. Let x[n] be a discrete signal with with DTFT X(Ω). If
we modulate x[n] by a cosine carrier signal the output signal will simply be the multiplication
of x[n] and cos (ω0n). In frequency domain, the result will be as follows:

x(n) cosωon
DTFT←→ 1

2
[X (ω + ωo) +X (ω − ωo)] (17)

So, the original spectrum of x[n] will shift at ω0 and −ω0. In our example, we considered a
sinc function as a message signal.

m(t) =

{
sin c(100t), |t| ≤ to
0, otherwise (18)

where, to = 0.1s. Let, carrier c(t) = cos(2πfct) where fc = 250Hz. So after modulation,
the original signal’s spectrum will shift to 250Hz and -250 Hz. Code for modulation is given
below:

Listing 9: Modulation
1 clc;
2 clear all;
3 close all;
4 % DSB−SC Modulation of message signal using FFT
5
6 %% message signal and carrier signal generation
7 % we'll use a sinc function as a messeage signal
8 % and a cosine function with 250 Hz frequency as carrier
9 to = 0.2; % duration of the sinc function
10 ts = 0.001; % sampling period
11 fc = 250; % Carrier frequency
12 fs = 1/ts; % Sampling Frequency
13 t = −to/2:ts:to/2; % time axis for message signal
14
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15 m = sinc(100*t); % message signal
16 c = cos(2*pi*fc*t); % carrier signal
17
18 %% Modulation
19 u = m.*c; % DSB−AM modulated signal
20 N = 1024; % FFT Bin size
21
22 M = fft(m, N); % N point DFT of message signal
23 M = M/fs; % scaling
24 U = fft(u, N); % N point DFT of modulated signal
25 U = U/fs;
26
27 % Visualizing modulated spectrum
28 fn = [0:1/N:1−1/N]*fs−fs/2; % Frequency axis for spectrum
29 figure(1)
30 subplot(211), plot(fn, abs(fftshift(M)), 'Linewidth', 2); title('Spectrum of

the message signal');
31 subplot(212), plot(fn, abs(fftshift(U)), 'Linewidth', 2); title('Spectrum of

the modulated signal');

The resulting spectrum is shown in figure 5.5.
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Figure. 5.5: After modulation, spectrum of the original signal is shifted to the carrier fre-
quency and magnitude is halved.
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Now consider the demodulation of the DSB-SC AM signal. Demodulation is done by
multiplying the modulated signal again by the carrier signal.

x(n) cos2 ωon
DTFT←→ 1

2
X(ω) +

1

4
[X (ω + 2ωo) +X (ω − 2ωo)] (19)

As a result, the spectrum has three components. The lower frequency component corresponds
to the original signal. This component is retrieved by using a low pass filter. To adjust
the magnitude of the message signal, a low pass filter with gain 2 is used. The code and
corresponding frequency spectra are as follows:

Listing 10: Demodulation
1 % continue the code after 'modulation' part
2 %% Demodulation
3 % Here we'll demodulate the modulated signal
4 % and then filter the demodulated signal to obtain message signal
5 y = u.*c; % demodulation
6 Y = fft(y,N); % N−point DFT of demodulated signal
7 Y = Y/fs;
8 figure(2)
9 subplot(211)
10 plot(fn, abs(fftshift(Y)), 'Linewidth', 2); % showing the demodulated

spectrum
11 title('Spectrum of Demodulated signal');
12
13 %% filtering
14 fcut = 200; % cut−off frequency of the low pass filter
15 ncut = floor(fcut*fs/N); % index vector for filter upto cut−off frequency
16 H = zeros(1,N); % Filter vector
17 H(1:ncut) = 2*ones(1,ncut); % Low pass filter with gain 2
18 H(N−ncut+1:N) = 2*ones(1, ncut); % Other portion of the low pass filter
19 Ufiltered = Y.*H; % Filtering the modulated spectrum
20 subplot(212)
21 plot(fn, abs(fftshift(Ufiltered)), 'Linewidth', 2); title('Spectrum of

Demodulated Signal');
22
23 %% visualizing the original and reconstructed message signal in time domain
24 ufiltered = real(ifft(Ufiltered))*fs; % ufiltered is the time domain version

of Ufiltered
25 figure(3)
26 subplot(211) plot(t, m, 'Linewidth', 2); title('Message Signal');
27 subplot(212) plot(t, ufiltered(1:length(t)), 'Linewidth', 2); title('

Reconstructed Signal');

The spectrum of demodulation and filtered signal is shown below:
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Figure. 5.6: Sepctra for demodulation and filtering.

You can also observed the original signal and filtered signal in time domain.
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Figure. 5.7: Original signal and Reconstructed signal
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Post Lab Tasks
• In example 1 of DTFS spectrum, i) show the reconstructed signal from its samples

for m = 0.5, 1 and 3. ii) Show the spectrum for m = 1 and 3. What do you
observe? iii) Show the reconstructed signal from its samples for tremax = T and
3 ∗ T . What difference do you observe in each case?

• Consider a signal x(t) = 3 cos (200πt) + 4 sin (500πt) − cos (800πt). Determine
the DTFS spectrum of this signal. Assume sampling frequency, Fs = 1.6KHz.

• Consider a signal x(t) = sinc2(100t). Sample the signal at a frequency 5KHz and
find the DTFT spectrum using the code in Listing 3.

• Consider a signal x[n] = {1
↑
, 1, 2, 3, 5, 8, 13}. Find autocorrelation of x[n] using

FFT. Show the spectrum and time domain plot for the result.

• Consider the following system shown in figure 5.8. If

m1(t) =

{
sin c(100t), |t| ≤ to
0, otherwise , m2(t) =

{
sin c2(100t), |t| ≤ to
0, otherwise

where t0 = 0.1s. Let carrier c1(t) = cos (2πfc1t) where fc1 = 250Hz and c2(t) =
cos (2πfc2t) where fc2 = 750Hz. Obtain magnitude spectrum of m1, m2 and final
output y(t) of the system.

Figure. 5.8
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LAB 6:
Z-Transform

Objectives
The main objectives of this lab are:

• To investigate signals and systems in three domain (Z-domain, frequency domain and
time domain)

• To learn how Z transform can be used to analyze system output

• To learn the use of Z transform in the design process of a system

• To find pole-zero plot and frequency response from Z transform

• Stability and causality of a system using Z transform

• Cascade and parallel operations of systems (e.g. filters) using Z transform

PART 1
Z transform is an important tool in analyzing discrete-time (DT) signals and linear time-

invariant (LTI) DT systems. It plays the same role as Laplace transform plays in analyzing
continuous time signals and systems. Z transform is the generalization of the discrete-time
fourier transform (DTFT). In this experiment, we’ll discuss different features of z-transform
and its application to characterize an LTI system. We’ll discuss how system causality and
stability can be determined from z-transform. We’ll see how to get the frequency response
of a system from z-transform.

Z Transform
The z-transform of a discrete-time signal x[n] is defined

X(z) =
∞∑

n=−∞

x[n]z−n (1)

where z is a complex variable. Since z-transform is an infinite power series, it exists only
for those values of z for which the series given in 1 converges. The region of convergence
(ROC) of X(z) is the set of all values of z for which X(z) attains a finite value. So while
mentioning a z-transform, its ROC should also be indicated. Another handy notation to
represent z-transform is:

X(z) = Z{x[n]} (2)
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Consider a finite-duration signal x[n] = {2,1
↑
,2,1,3}. Its z-transformed signal,

X(z) =
∞∑

n=−∞

x[n]z−n =
3∑

n=−1

x[n]z−n

= 2z1 + 1 + 2z−1 + z−2 + 3z−3

(3)

ROC of X(z) is entire z-plane except z = 0 and z = ∞.
Depending on the nature of the signal, ROC can be different. For example, ROC of a causal
signal is the exterior of a circle of some radius r2 while the ROC of an anticausal signal is
the interior of a circle of some radius r1. And in case of a non-causal signal, ROC is a ring
in the z-plane. These points will be discussed in detail in theory.

Inverse Z-transform
Inverse z-transform is the process of converting a z-transformed signal into time domain. An
inversion formula for obtaining x[n] from X(z) can be derived by using the Cauchy integral
theorem. However, in case of rational z-transforms, partial fraction expansion and power
series expansion methods are used. Partial fraction expansion is used to convert a cascade
system into a parallel one. This point will be discussed in the coding section.

Poles and Zeros of Z-transform
Let us consider a rational X(z) in the form:

X(z) =
B(z)

A(z)
=

b0 + b1z
−1 + b2z

−2 + · · · · · ·+ bMz−M

a0 + a1z−1 + a2z−2 + · · · · · ·+ aNz−N
(4)

where, aN 6= 0. Here we’ll give the definitions of poles and zeros. Zeros of a z-transform
X(z) are the values of z for which X(z) = 0 and poles are the values of z for which X(z) =∞.
In other words, the roots of numerator in (4) are called zeros and the roots of denominator
in (4) are called poles of X(z).
If a0 6= 0 and b0 6= 0, we can factor out the terms b0z−M and a0z

−N ,

X(z) =
B(z)

A(z)
=

b0z
−M

a0z−N
zM + (b1/b0)z

M−1 + · · · bM/b0
zN + (a1/a0)zN−1 + · · ·+ aN/a0

(5)

Since the numerator and denominator in equation (5) are polynomials, they can be expressed
in factored form:

X(z) =
B(z)

A(z)
=

b0
a0

z−M+N (z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)
(6)

Thus X(z) has M finite zeros at z = z1, z2, · · · zM (roots of the numerator polynomial), N
finite poles at z = p1, p2 · · · pN (the roots of the denominator polynomial) and |N − M |
zeros (if N > M) or poles (if N<M) at z = 0. For example consider a z-transform X(z) =
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z + 1

(z − 1

2
)(z +

3

5
)
. The numerator has a root at z = -1 and two poles at z =

1

2
and z = −3

5
.

So the zero of X(z) is
1

2
and poles are {1

2
,−3

5
}.

Pole-Zero Plot
X(z) can be graphically represented by a pole-zero plot in the complex plane, which shows
the location of poles by crosses (x) and the location of zeros by circles (◦). The multiplicity
of multiple-order poles or zeros is indicated by a number close to the corresponding cross or
circle. By definition, the ROC of a z-transform should not contain any poles.
The pole-zero plot of a z-transform provides important information about the system’s be-
haviour. The MATLAB/OCTAVE function zplane allows the computation and visualization
of the pole-zero plot of a z-transform. Zeros and poles can individually be determined from
a z-transform using the MATLAB/OCTAVE function roots. We’ll see the applications of
these functions in the coding section.

Pole Zero Location and System’s Behavior
Convolution property of z-transform implies that the convolution of x[n] and h[n] in time
domain corresponds to multiplication in z-domain. If x[n] is the input sequence to an LTI
system with impulse response h[n], the output sequence y[n] is given by the following equation
for convolution sum:

y[n] =
∞∑

k=−∞

x[k]h[n− k] (7)

Using the convolution property, we can write equation (7) in the z-domain as:

Y (z) = X(z)H(z) (8)

where Y(z), X(z) and H(z) are the z-transform of y[n], x[n] and h[n] respectively. So if we
know any x[n] and observe the corresponding y[n], we can determine the impulse response
by first solving H(z) from the relation

H(z) = Y (z)/X(z) (9)

and then evaluation the inverse z-transform of H(z). As H(z) and h[n] are equivalent descrip-
tion of a system in the two domains, we can deduce many important properties of a system
from H(z). H(z) is called the system function.
Here, the coefficients of the denominator ak are called the are the ’feed-backward’ coefficients
and the coefficients of the numerator are the ’feed-forward’ coefficients, bk. These are called
filter coefficients which will be discussed in detail in the next two labs.
Now we’ll discuss the impact of pole location and time domain behavior of system function.
We’ll consider real and causal signals. First we’ll see that the characteristics behavior of
causal signals depends on whether the poles of the transform are contained in the region
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|z| < 1, or in the region |z| > 1 or the circle |z| = 1. Since the circle |z| = 1 has a radius of
1, it is called the unit circle. It acts as a reference line for pole-zero plot. The Unit Circle at
the Z-plane is the set of points z to which the Z-Transform equals the Discrete Time Fourier
Transform (DTFT).
In case of a single pole, the signal is decaying if the pole is inside the unit circle, constant if
the pole is on the unit circle and growing if the pole is outside the unit circle. In addition,
negative pole results in a signal that alternates in sign. Following figure illustrates these
points.

Figure. 6.1: Time-domain behavior of a single real pole causal signal as a function of the pole
location with respect to the unit circle.

In case of double pole, the only exception is that a single pole on the unit circle corresponds
to a constant signal but a double real pole on the unit circle results in an unbounded signal.
A pair of complex conjugate poles results in an exponentially weighted sinusoidal signal. The
amplitude of the signal is growing if r>1, constant if r = 1 (sinusoidal signals) and decaying
if r<1 (figure(6.3).

Depending on the ROC of H(z) and its pole-zero location we can determine if the LTI
system described by H(z) is causal and stable or not.

1. An LTI system is causal if and only if the ROC of H(z) is the exterior of a circle of
radius, r <∞.

2. An LTI System is BIBO stable if and only if the ROC of H(z) includes the unit circle.

So, a causal LTI system is BIBO stable if and only if all the poles of H(z) are inside the unit
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Figure. 6.2: Time domain behavior of causal signals corresponding to a double real pole as a
function of the pole location.

circle. ROC can be observed from the pole-zero plot of H(z). We’ll discuss this more in the
class.

Frequency Response from Z-transform
Frequency reponse of a system is equivalent to evaluating the transfer function H(z) of that
system on the unit circle, i.e. z = ejω.

H
(
ejω
)
= H(z)|z=ejω (10)

Using this methodology, it is possible to sketch the frequency response of the system that
is related to its poles and zeros. We’ll compute the frequency response of a system H(ejω)
from H(z) using freqz function in MATLAB/OCTAVE.
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Figure. 6.3: A pair of complex conjugate poles corresponding to causal signals with oscillatory
behavior.

PRELAB TASKS

1. Determine the z-transform of the signal x[n] = (
1

4
)nu[n] and mention its ROC.

2. Draw the pole-zero plot for X(z) =
1 + z−1

1− z−1 + 0.5z−2
.

3. Consider a transfer function H(z) has four real poles. If three of them are inside
the unit circle and one of them is outside the unit circle. Comment on the
time-domain behavior of H(z).

4. A linear time invariant system is characterized by the system function: X(z) =
1 + 6z−1 + z−2

(1− 2z−1 + 2z−2)(1− 0.5z−1)
. Specify all the ROCs of the system. In which

case, the system is causal and stable.
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Part 2
Z Transform in MATLAB/OCTAVE

• Z domain representation in MATLAB/OCTAVE

• Pole-zero plot in MATLAB/OCTAVE

• Frequency response of a system from its z-transform using MATLAB/OCTAVE

• Cascade and Parallel operations of systems using z transform in MATLAB/OCTAVE

• Functions to use: zplane(), deconv(), residuez()

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this part of our lab, we’ll implement the ideas covered in Lab in MATLAB to discuss
the idea and application of z-transform. W’ll see how to compute partial fraction expansion
using residuez function. Syntax for the function is:

[r, p, z] = residuez(b,a)

This finds the residues, poles, and direct terms of a partial fraction expansion of the ratio
of numerator and denominator polynomials, b and a. Consider a rational z-transform X(z)
given by:

X(z) =
1 + 2z−1 − z−2

1− z−1 + 0.3561z−2
(11)
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We’ll determine its partial fraction expansion. For this type of X(z) we need to provide the
numerator and denominator polynomials in MATLAB. In this example, numerator polyno-
mial is num = [1 2 1] and denominator polynomial is den = [1, -1, 0.3561]. Then we’ll call
the residuez function.

Listing 1: Partial Fraction using residuez function
1 clc;
2 clear all;
3 close all;
4
5 % Partial fraction expansion of X(z) = (1+2z −̂1−z^−2)/(1−z^−1+0.3561z^−2)
6
7 num = [1, 2, −1]; % numerator polynomials
8 den = [1, −1, 0.3561]; % denominator polynomials
9
10 [r,p,k] = residuez(num, den); % calling the residuez function
11 % r is the resiudes
12 % p is the poles
13 % k is the direct term
14
15
16 output:
17 r =
18
19 1.9041 − 1.6822i
20 1.9041 + 1.6822i
21
22 p =
23
24 0.5000 + 0.3257i
25 0.5000 − 0.3257i
26
27 k =
28
29 −2.8082

So, X(z) can be written using partial fraction expansion:

X(z) = −2.8082 + 1.9041− 1.6822i

1− (0.5 + 0.3257i)z−1
+

1.9041 + 1.6822i

1− (0.5− 0.3257i)z−1

By using this partial fraction equation and the look up table inverse z-transform can be com-
puted. Remember that, the inverse z-transform will depend on the ROC of the z-transform.
This will be discussed in the theory class. We’ll not go into details here.
We’ll now visualize the pole-zero plot of a z-transform using the zplane function in MAT-
LAB/OCTAVE. Syntax for the function is

zplane(z,p)
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Figure. 6.4: Pole-zero plot of X(z) given by equation (11)

zplane(b,a), where b and a are row vectors, first uses roots to find the zeros and poles of the
transfer function represented by the numerator coefficients b and the denominator coefficients
a. The symbol ’o’ represents a zero and the symbol ’x’ represents a pole. The plot includes
the unit circle for reference. Consider the z-transform given in equation (11).

Listing 2: Pole-zero plot of X(z)
1 clc;
2 clear all;
3 close all;
4
5
6 %pole−zero plot of X(z) with numerator given by b and
7 % denominator given by a
8 b = [1, 2, −1]; % numerator
9 a = [1, −1, 0.3561]; % denominator
10
11 zplane(b,a);

In the figure (6.4), the dotted line indicates the unit circle. As mentioned earlier this is the
set of points z to which the z-transform equals the DTFT. The ◦ represents the zeros and
the x represents the pole. The system has two complex conjugate poles inside the unit circle.
If the locations of the poles and zeros are known, these can be used as inputs to the zplane
command. The syntax of the command in this case is

zplane(z,p)

This plots the zeros specified in column vector z and the poles specified in column vector
p in the current figure window. The zeros and poles can be found directly using the roots
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command.
If we know the zeros and poles of a system’s transfer function we can obtain its z-transfrom
equation using the poly function in MATLAB/OCTAVE.
We’ll now see how to use the freqz function to estimate the frequency response of a system.
Given the transfer function of a system in the following form:

X(z) =
b0 + b1z

−1 + · · · · · ·+ bnz
−n

a0 + a1z−1 + · · · · · ·+ amz−m
=

b(z)

a(z)
(12)

the freqz function uses an FFT-based approach to compute the frequency response. The
function has a variety of formats. A useful format is

[h,f ] = freqz(b,a, npt, Fs)

where the variables b and a are the vectors of the numerator and denominator polynomials.
In case of transfer function, vector ’b’ is related to the input of a system and vector ’a’ is
related to the output of a system. These coefficients control the response of a system. Fs is
the sampling frequency and npt the number of frequency between 0 and Fs

2
. Using the freqz

command without output arguments plots the magnitude and phase responses automatically.
Consider the transfer function:

H(z) =
1− 1.16180z−1 + z−2

1− 1.5161z−1 + 0.878z−2
(13)

We’ll compute its frequency response using freqz command.

Listing 3: Frequency response of H(z) using freqz command
1 clc;
2 clear all;
3 close all;
4
5 % Frequency response from transfer function
6
7 b = [1 1.16180 1]; % numerator
8 a = [1 −1.5161 0.878]; % denominator
9 % Fs = 256 and number of points between 0 and Fs/2 is 512
10 freqz(b, a, 256, 512);

The output response is shown in figure(6.5).
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Figure. 6.5: Frequency Response of H(z). Top one is the magnitude plot and the bottom one
is the phase plot.

This is the response of a notch filter. A notch filter is a band-stop filter with sharp stop-band.
From the magnitude response, we see that it has a very sharp dip at frequency 50 Hz. So the
filter only rejects signals having frequency 50Hz and allows the other ones. 50 Hz notch filter
is used in many equipment in order to block the power signal which introduces a noise of 50
Hz. The response of this filter can be changed by changing the filter coefficients a which will
change the poles of H(z).
Now we’ll discuss how to convert between structures. Multiple Digital systems can be con-
nected in cascade or parallel or a combination of these two. The two types of connection for
two systems are shown in the figure (6.6). For cascade realization, the transfer function
H(z) is factored as

H(z) = H1(z)H2(z)H3(z) · · ·Hk(z) =
k∏

i=1

Hi(z) (14)

where Hi(z) is either a second/first order section.

Hi(z) =
b0 + b1iz

−1 + b2iz
−2

1 + a1iz−1 + a2iz−2
, second order

Hi(z) =
b0 + b1iz

−1

1 + a1iz−1
, first order

(15)
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Figure. 6.6: (a) Cascade Connection (b) Parallel Connection

where k is the integer part of M+1
2

(M is the order of the denominator of H(z)) For parallel
realization, the transfer function H(z) is decomposed using partial fractions to give

H(z) = B0 +
k∑

i=1

Hi(z) (16)

where Hi(z) is either a second/first order section and B0 =
bN
aM

. Let us consider a cascaded
system given by:

H(z) =
(1 + 0.481199z−1 + z−2)(1 + 1.474597z−1 + z−2)

(1 + 0.052921z−1 + z−2)(1− 0.304609z−1 + 0.238865z−2)

We’ll convert it into parallel realization.In this problem, the z-transform has two pairs of
numerator and denominator polynomials. So it is a cascade connection of two subsystems.
The final z-transform will have a numerator that is the product of the numerators and a
denominator that is the product of the denominators of the subsystems. To do this, we’ll use
MATLAB/OCTAVE function sos2tf to convert the two pairs of polynomials into a transfer
function with a pair of rational polynomials of the form b(z)

a(z)
. Remember that, sos2tf can

be used only with polynomials with degree at most 2. conv function can be used in case of
polynomials higher than degree two to convert the product of two polynomials into a single
one. After obtaining the overall transfer function, we can use residuez function to find out
the partial fraction.
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Listing 4: Cascade to parallel structure conversion
1 clc;
2 clear all;
3 close all;
4
5 nstage = 2; % number of individual subsystems
6 N1 = [1 0.481199 1]; % numerator of H1(z)
7 N2 = [1 1.474597 1]; % numerator of H2(z)
8 D1 = [1 0.052921 0.831731]; % denominator of H1(z)
9 D2 = [1 −0.304609 1]; % denominator of H2(z)
10 sos = [N1 D1; N2 D2]; % system matrix
11 [b,a] = sos2tf(sos); % The overall system function
12 [c, p, k] = residuez(b,a); % partial fraction expansion
13 m = length(b);
14 b0 = b(m)/a(m); % B0 term in the parallel realization
15 j = 1;
16 for i = 1:nstage
17 bk(j) = c(j)+c(j+1);
18 bk(j+1) = −(c(j)*p(j+1)+c(j+1)*p(j));
19 ak(j) = −(p(j)+p(j+1));
20 j = j+2;
21 end
22
23 % The loop is used to add the first order systems to make it
24 % second order

Without the loop in the above code, the result will be:

H(z) = 1.2023 +
−0.8535− 1.7034i

1− (0.1523 + 0.9883i)z−1
+

−0.8535 + 1.7034i

1− (0.1523− 0.9883i)z−1

+
0.7524 + 0.4716i

1− (−0.0265 + 0.9116i)z−1
+

0.7524− 0.4716i

1− (−0.0265− 0.9116i)z−1

The function of the loop is to sum the terms with complex conjugate poles. After the
execution of loop,

H(z) = 1.2023 +
−1.707 + 3.6271z−1

1− 0.3046z−1 + z−2
+

1.5047− 0.82z−1

1− 0.0529z−1 + 0.8317z−2

Finally we’ll see how the system property like stability and causality depend on the pole
location. For example, consider a system with transfer function

H(z) =
3− 4z−1

1− 3.5z−1 + 1.5z−2
(17)

The system has poles at z =
1

2
and z = 3. So, the possible ROCs for the system are:
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i) |z| < 1
2

ii) 1
2
< |z| < 3

iii) |z| > 3

The pole-zero plot with each of the ROC and their corresponding time domain impule re-
sponse are shown in the following figure:

Figure. 6.7: Pole-zero plots with ROC (upper portion) and corresponding impulse response
(lower portion). The Blue region is the ROC for each cases.

From the figure (6.7), it is seen that in case of ROC: |z| < 1
2
, the ROC does not contain

the unit circle and as ROC is the interior of the circular region, the system is both unstable
and anti-causal. Impulse response for this case confirms this. Similarly for |z| > 3, the ROC
also does not contain the unit circle but the ROC is the exterior of the circular region and
hence the system is causal but unstable. In case of 1

2
< |z| < 3, the ROC contains the unit

circle and is a ring. So the system is non-causal and stable. The time domain signal shown in
the figure confirms this. Thus pole-zero plot along with ROC of a system gives us important
information about a system’s causality and stability. By controlling the filter coefficients,
we can control the location of poles and zeros of a system which controls the time domain
behavior of the system. For example, by placing all the poles of a causal system inside the
unit circle, we can make it stable. These points will be delineated in later labs when we’ll
discuss filter design.
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Post Lab Tasks

1. Consider the system H(z) =
z−1 +

1

2
z−2

1− 3

5
z−1 +

2

25
z−2

. Determine the frequency re-

sponse of the system.

2. Consider the system: H(z) =
z3 − 2z2 + 2z − 1

(z − 1)(z − 0.5)(z − 0.2)
. ROC of the z transform

is given by: |z| > 2. Show the pole-zero diagram of the system. Is the system
stable?

3. Determine the partial fraction expansion of X(z) =
2z4 + 16z3 + 44z2 + 56z + 32

3z4 + 3z3 − 15z2 + 18z − 12
. Find its pole-zero plot and determine the

ROC of the z-transform. What are the ROCs for which the system is causal and
stable? Also determine the system’s frequency response.

4. Determine the parallel realization of the system given as follows:

X(z) =
N1(z)N2(z)N3(z)

D1(z)D2(z)D3(z)

where,

N1(z) = 1− 1.22346z−1 + z−2

N2(z) = 1− 0.437833z−1 + z−2

N3(z) = 1 + z−1

D1(z) = 1− 1.4334509z−1 + 0.85811z−2

D2(z) = 1− 1.293601z−1 + 0.556929z−2

D3(z) = 1− 0.612159z−1
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LAB 7:
IIR Filter Design

Objectives
The main objectives of this lab are:

• To be familiar with the basic idea of digital filter and filter specification

• To understand Infinite Impulse Response (IIR) Filter

• To design digital IIR filters from specification through coefficient calculation

PART 1
In digital signal processing, we often need to change the relative amplitudes of the fre-

quency components of the signal or remove unwanted frequency components from a signal.
This process is known as filtering. Digital filters are used in numerous signal processing
applications, for example, signal restoration, telecommunication system etc. In this lab,
we’ll discuss how to design an infinite impulse response (IIR) filter considering given filter
specifications.

FIR and IIR Filters
Digital filters require both the time and frequency domain techniques. This is because the
desired filter characteristics are specified in the frequency domain but filters are usually
described by difference equation in time domain. In the filter design process, we determine
the coefficients of the filter’s difference equation.
A general linear and time invariant causal digital filter with input x[n] and output y[n] can
be described by linear constant coefficient difference equations of the form:

y[n] = −
N∑
k=1

bky[n− k] +
M∑
k=0

akx[n− k] (1)

where ak and bk are the coefficients which characterizes the filter. ak’s are the feedforward
coefficients (affect the input signal) and bk’s are the feedback coefficients (affect the output
signal). In case of impulse response, the input is a delta function. If we denote the impulse
response h[n], equation (1) becomes

h[n] = −
N∑
k=1

bkh[n− k] +
M∑
k=0

akδ[n− k] (2)

If we take z-transform of equation (1), we get the system function as:

H(z) =
Y (z)

X(z)
=

ak
∑M

k=0 z
−k

1 +
∑N

k=1 bkz
−k

(3)
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Figure. 7.1: (a) Block Diagram of FIR filter (b) Block Diagram of IIR Filter. Note that, FIR
Filter only consists of feedforward block but IIR filter has both feedforward and feedbackward
blocks.

The system function of the filter has M zeros and N poles. Depending on the nature of the
impulse response, digital filters are of two types: infinite impulse response (IIR) and finite
impulse response (FIR) filters. If bk = 0 for all k in equation (2), then the filter is FIR filter.
In case of FIR filter, h[n] and H(z) are given by:

h[n] =
M∑
k=0

akδ[n− k]

H(z) =
M∑
k=0

akz
−k

(4)

Since in case of FIR filter, (4) is not recursive, the impulse response has finite duration M
and hence the name finite impulse response filter. On the other hand, bk 6= 0 represents an
IIR filter. In this case, the equation (2) is recursive and generates an impulse response which
is non-zero for n→∞. The block diagram of FIR and IIR filter is shown in figure(7.1).

Design Specification of a Practical Filter
In designing any filter, the ideal frequency response characteristics are desirable but they
are not realizable and necessary in most practical applications. In figure(7.2), the magnitude
characteristics of a physically realizable low pass filter is shown. The bold black line represents
the ideal response. In practical filter, magnitude of H(ejω in the passband (the allowable
frequency range) is not constant like the ideal response but has a small amount of ripple.
Similarly in the stop band (the forbidden frequency), the filter response |H(ejω)| is not zero.
The transition of the frequency response from passband to stopband defines the transition
band or transition region of the filter. The bandedge frequency ωp defines the edge of the
passband while the frequency ωs denotes the beginning of the stopband. The width of the
transition band is ωs − ωp. The width of the passband is usually called the bandwidth of the
filter. If δp is the amount of ripple in the passband, the magnitude |H(ejω| varies between
the limits 1± δp.
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Figure. 7.2: Magnitude characteristics of physically realizable filters

The ripple in the stopband of the filter is denoted by δs. Usually the response of any filter
is given in log scale. In that case, passband ripple and stopband attenuation in decibels are
given by

Passband ripple, R = −20 log10(1− δp)
Stopband Attenuation, A = 20 log10 δs

(5)

In any filter design problem, the following requirements are specified:

• The maximum tolerable passband ripple

• The maximum tolerable stopband ripple

• The passband edge frequency, ωp

• The stopband edge frequency, ωs

Based on these specifications, we can select the filter coefficients {ak} and {bk} in the fre-
quency response characteristics.
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Design of IIR Filters
Design of a digital IIR filter implies to determine the coefficients of the equation given in
eqaution(1) according the filer specifications. A simple way to obtain the IIR filter coefficients
is to place the poles and zeros in the z-plane such that the resulting filter has the desired
frequency response. This method is known as the pole-zero placement method and only
useful for simple filters such as notch-filter design. A more efficient approach is first to design
an analog filter satisfying the desired specifications and then to convert it into an equivalent
digital filter. Most IIR filters are designed this way. Three of the most common methods of
converting analog filters into equivalent digital filters are the impulse invariant, the matched
z-transform and the bilinear z-transform methods. In our lab, we’ll consider the pole-zero
placement and the bilinear z-transform method to design an IIR filter.

Steps of filter design using pole-zero placement method

By strategically placing poles and zeros on the z-plane, simple low pass or other frequency se-
lective filters can be designed. While designing simple digital filters using pole-zero placement
method the following steps are to be followed:

• The location of poles and zeros are to be determined from the desired filter specifica-
tions.

• The transfer function H(z) is written in terms of poles and zeros. If z1, z2 · zM are the
zeros of the transfer function and p1, p2 · · · pN are the poles, then

H(z) =
(z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)
(6)

• From H(z), the corresponding difference equation is obtained and finally the filter co-
efficients {ak} and {bk} are determined.

We’ll illustrate these points in the MATLAB coding section with an example.

Bilinear Transformation

Most of the digital filters are designed from their analog counterparts using a transforma-
tion. In bilinear transformation method, an analog filter H(s) (where H(s) is the s-domain
representation of the transfer function of the system) is converted into a digital filter H(z)
by replacing s as follows:

s =
2

T

1− z−1

1 + z−1
(7)

The above transformation maps H(s) from the s-plane to H(z) in z-plane. However, the direct
replacement of s in H(s) as shown in equation (7) may lead to a digital filter with undesirable
response. This is because the behavior of the desired filter response H(ejω) at some analog
frequency ω = ωa does not appear at the digital frequency ωa but at frequency ωd, where

ωd =
2

T

(
tan−1

ωaT

2

)
(8)
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This is termed as frequency warping which will be discussed in detail in theory. For this
reason, before replacing s by the formula given in equation (7), the cut-off frequency of the
filter must be pre-warped by the following equation:

ωa = k tan

(
ωdT

2

)
where,
ωd = specified cutoff frequency
ω′a = prewarped cutoff frequency
T = sampling period

Now if we summarize the steps for this process:

• Given the digital filter frequency specifications, we need to prewarp the digital frequency
specifications to the analog frequency specifications. For the low pass filter and high
pass filter:

ωa =
2

T
tan
(ωdT

2

)
For the bandpass and bandstop filter:

ωal =
2

T
tan
(ωlT

2

)
, ωah =

2

T
tan
(ωdhT

2

)
• Then we need to perform prototype transforming by replacing s in the transfer function,

H(s) using one of the following transformations, depending on the type of filter required:

s =
s

ωa
from lowpass to lowpass

s =
ωa
s

from lowpass to highpass

s =
s2 + ω2

0

sW
from lowpass to bandpass

s =
sW

s2 + ω2
0

from lowpass to bandstop

(9)

where, ω0 =
√
ωalωah and W = ωah − ωal

• Finally we need to substitue s =
2

T

1− z−1

1 + z−1
in H(s) to obtain the digital filter.

We’ll explain these steps using an example in coding section.
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PRELAB TASKS
1. Write down three practical applications of both FIR and IIR filters.

2. Consider a causal IIR system with system function:

H(z) =
1 + 2z−1 + 3z−2 + 2z−3

1 + 0.9z−1 − 0.8z−2 + 0.5z−3

Write down the feedforward and feedback coefficients for this filter.

3. Consider a normalized low pass analog filter with cut-off frequency 1 rad/sec
given as:

H(s) =
1

s+ 1

If we want to convert the analog filter into a digital one by bilinear transformation,
what is the prewarped analog frequency?
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Part 2
IIR Filter Design in MATLAB/OCTAVE

• Realization of IIR filters in MATLAB/OCTAVE

• Functions to use: zplane(), bilinear(), poly(), freqz()

Instructions
• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this section, we’ll discuss the design procedure mentioned in the theoretical section with
some examples. Consider an example in which we want to design a bandpass digital filter
using pole-zero placement method to meet the following specifications:

• complete signal rejection at dc and 250 Hz

• a narrow passband centered at 125 Hz

• a 3dB bandwidth of 10 Hz

The sampling frequency is 500 Hz. Let us first determine the pole-zero location of the desired
filter. Since complete rejection of signals is required at DC i.e. 0Hz and 250Hz, we need to

place the zeros at an angle 0° and 2π× 250

500
= π on the unit circle. To have a narrow passband

centered at 125 Hz, we need to place poles at 2π× 125

500
=
π

2
. Now in order to ensure that the

filter coefficients are real, we need to have a complex conjugate pole pair and so the angle
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corresponding to the pole will be ±π
2
.

Now we need to determine the magnitude of the poles which is governed by the bandwidth
specifications. An approximate relationship between r (for r>0.9) and bandwidth (bw) is
given by:

r ≈ 1−
(bw
Fs

)
π (10)

For the problem, bw = 10Hz and Fs = 500Hz. So plugging this number in equation(10), we
get r = 0.937. The pole-zero diagram for this filter is given below:
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Figure. 7.3: Pole-zero plot of the filter

Now the transfer function of the filter can be written in z-domain:

H(z) =
(z − 1)(z + 1)

(z − rejπ/2)(z − re−jπ/2)

=
z2 − 1

z2 + 0.877969

=
1− z−2

1 + 0.877969z−2

Now from the above equation we find that the filter is a second order one with the coefficients:

a0 = 1 b1 = 0
a1 = 0 b2 = 0.877969
a2 = −1
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The code and filter’s magnitude response is given below:

Listing 1: Design of a band-pass filter using pole-zero placement
1 clc; clear all;close all;
2
3 Fs = 500; % Sampling frequency
4 bw = 10; % bandwidth
5
6 %% zero−calculation
7 Fr1 = 0; % DC frequency
8 Fr2 = 250; % 250Hz frequency
9
10 % angle corresponding to the zeros
11 theta1 = 2*pi*(Fr1/Fs);
12 theta2 = 2*pi*(Fr2/Fs);
13
14 z1 = exp(1j*theta1);
15 z2 = exp(1j*theta2);
16
17 %% pole−calculation
18 Fp = 125; % passband frequency
19 thetap = 2*pi*(Fp/Fs); % angle corresponding to the pole
20
21 r = 1−(bw/Fs)*pi; % magnitude of the pole
22 p1 = r*exp(1j*thetap); %first pole
23 p2 = r*exp(−1j*thetap); % second pole
24 % coefficient a, b must be real so the poles and zeros will be complex
25 % conjugate pairs (if any complex pole or zero exists)
26
27 %% pole−zero plot
28
29 zplane([z1, z2]', [p1, p2]');
30 %% determine H(z) = N(z)/D(z)
31 num = poly([z1,z2]); % numerator vector
32 den = poly([p1, p2]); % denominator vector
33
34 [h, f] = freqz(num, den, 256, Fs);
35 figure(1)
36 subplot(211) plot(f, abs(h)/max(abs(h)), 'linewidth', 2);
37 xlabel('Frequency(Hz)'); ylabel('Magnitude Response');
38 subplot(212) plot(f, angle(h)*180/pi, 'linewidth', 2);
39 xlabel('Frequency(Hz)'); ylabel('Phase Response');

After computing the pole and zero, the numerator and denominator polynomials are de-
termined using the MATLAB/OCTAVE function poly. Then we computed the frequency
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response of the filter using freqz function which was introduced to you in the previous lab.
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Figure. 7.4: Magnitude (normalized) and phase response of the designed bandpass filter

From the filter response it is seen that the filter has a narrow passband with a peak at fre-
quency 125 Hz and at 0 and 250 Hz, the filter’s magnitude is zero which were the design
criteria. (verify that the filter has a 3 dB bandwidth of 10Hz!). Thus by pole-zero placement
method, we can design simple filters like the one shown in this example.
Now we’ll discuss how we can design filters using bilinear transformation in MATLAB/OC-
TAVE. Let us consider the design of a high pass filter from an analog prototype low pass
filter. The normalized transfer function of an RC low pass filter is given by:

H(s) =
1

s+ 1
(11)

We’ll design a high pass filter assuming sampling frequency 150 Hz and cut-off frequency 30
Hz.
To design the digital high pass filter, we’ll first calculate the pre-warped analog frequency.
For 30 Hz cut-off frequency the corresponding digital frequency, ωd = 2π× 30 = 60π and the
prewarped analog frequency,

ωa =
2

Ts
tan
(ωdTs

2

)
= 217.9628rad/s
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Then as we’ll design a high-pass digital filter from a low pass filter, we’ll use the required
transformation. Following table summarizes the transformation and corresponding MAT-
LAB/OCTAVE commands.

Figure. 7.5: Transformation from Low pass filter to other filters and corresponding MAT-
LAB/OCTAVE Commands. Here Ap and Bp are the numerator and denominator vector of
lowpass prototype respectively. wa is the cutoff frequency of the lowpass or highpass filter,
w0 is the center frequency and W is the bandwidth of the bandpass or bandstop filter.

After this transformation of s, we’ll substitute s =
2

Ts

1− z−1

(1 + z−1
to complete the bilinear

transformation. This is done in MATLAB/OCTAVE by using the function bilinear. Syntax
for the function is

[a,b] = bilinear(A, B, Fs)

Here, A and B are the numerator and denominator vectors of the analog filter respectively.
a and b are the numerator and denominator vectors of the digital filter respectively. In other
words, a is the feedforward coefficient vector and b is the feedback coefficient vector of the
digital filter. Fs is the sampling frequency. After obtaining H(z) we’ll use freqz to determine
the frequency response of the filter. The code is given below:

Listing 2: Design of a high pass filter from low pass prototype filter using Bilinear Transfor-
mation

1 clc;clear all;close all;
2 % Designing a high pass filter from an analog low pass filter
3 % using bilinear transform
4 Fc = 30; % Cut−off frequency
5 Fs = 150; % Sampling frequency
6 Ts = 1/Fs; % Sampling period
7 % Filter pre−warped frequency calculation
8 wd = 2*pi*Fc; % Digital frequency
9 wa = 2/Ts*tan(wd*Ts/2); % pre−warped frequency
10 % analog filter coefficients H(s) = 1/(1+s)
11 num = [1]; % numerator coefficients
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12 den = [1 1]; % denominator coefficients
13 % filter transformation from low pass to high pass
14 [A, B] = lp2hp(num, den, wa); % for MATLAB use this code, comment out
15 %the next line
16 [A, B] = sftrans(num, den, 1, wa, 1); % for Octave use this code,
17 %comment out the previous line
18 [a, b] = bilinear(A, B, Fs); % Bilinear Transformation
19 % Frequency response
20 N = 512; % FFT point number
21 [hz, f] = freqz(a, b, N, Fs); % computing frequency response
22 phi = 180*unwrap(angle(hz))/pi; % Unwarping the phase angle
23 subplot(211)
24 plot(f, abs(hz), 'linewidth', 2);
25 ylabel(Magnitude Response);xlabel(Frequency(Hz));
26 subplot(212)
27 plot(f, phi, 'linewidth', 2);
28 ylabel(Phase Response); xlabel(Frequency(Hz));

The output response of this digital filter is:
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Figure. 7.6: Magnitude and Phase response of the high pass filter.

From figure(??, we see that the filter acts a high pass filter with cut-off frequency 30Hz
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as it attenuates signals whose frequency is less than 30Hz.

1. Design a notch filter using pole-zero placement method with following specifica-
tions:

• notch frequency 50 Hz

• 3 dB width of the notch ±5 Hz

• sampling frequency 500 Hz

Show the magnitude and phase response of the filter. Consider a signal, x(t) =
2 cos (60πt) + cos (100πt). If x[n] is the signal obtained from x(t) by sampling it
at a frequency 500 Hz, show the output signal after x[n] is passed through your
designed notch filter.

2. Design a bandstop filter with the following property using pole-zero placement
method.

• Center frequency, Ω0 =
π

10
(complete attenuation)

• Bandstop width, Ωw = 2Ωcf =
π

20

Show the frequency response of the filter and mention the filter coefficients.

3. A discrete bandpass filter with following specifications is to be designed using
bilinear transformation from a low pass filter prototype.

• passband, 200-300 Hz

• sampling frequency, 2KHz

• filter order, N = 2

The transfer function of prototype low pass filter is H(s) =
1

s+ 1
. Determine

the filter coefficients and show the frequency response of the filter.
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LAB 8:
FIR Filter Design

Objectives

The main objectives of this lab are:

• To understand the basic idea of FIR Filter

• To design digital FIR filters from specification by windowing method

PART 1

In our last lab, we covered the basic idea of a filter and how to design an IIR (Infinite
impulse response) filter by pole-zero placement and bilinear transform methods. In this
lab, we’ll discuss about an FIR (Finite Impulse Response) filter and how to design FIR
filters.

FIR and IIR Filters

As mentioned in the previous lab, a general linear and time invariant causal digital filter
with input x[n] and output y[n] can be described by linear constant coefficient difference
equations of the form:

y[n] = −

N∑
k=1

bky[n − k] +

M∑
k=0

akx[n − k] (1)

where ak and bk are the coefficients which characterizes the filter. ak’s are the feedforward
coefficients (affect the input signal) and bk’s are the feedback coefficients (affect the output
signal). In case of impulse response, the input is a delta function. If we denote the impulse
response h[n], equation (1) becomes

h[n] = −

N∑
k=1

bkh[n − k] +

M∑
k=0

akδ[n − k] (2)

If we take z-transform of equation (1), we get the system function as:

H(z) =
Y(z)
X(z)

=
ak

∑M
k=0 z−k

1 +
∑N

k=1 bkz−k
(3)

The system function of the filter has M zeros and N poles. In case of an filter the feedback
coefficients b′ks are zero and so h[n] and H(z) are given by:

h[n] =

M∑
k=0

akδ[n − k]

H(z) =

M∑
k=0

akz−k

(4)
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Since in case of FIR filter, (4) is not recursive, the impulse response has finite duration
M and hence the name finite impulse response filter. The FIR filter in equation(4) has
filter length = M+1. FIR Filters can have exactly linear phase response and very simple to
implement.

FIR Filter Design using Window Method

Frequency response of a filter HD(ω) is related to its impulse response hD[n] by the Inverse
Discrete time Fourier Transform:

hD[n] =
1

2π

∫ π

−π

HD(ω)e jωndω (5)

The subscript ’D’ is used to denote the ideal behavior. So if HD(ω) is known, hD[n] can
be determined from equation (5). Let us illustrate this with an example of Low Pass
Filter (LPF). Consider an ideal LPF with cut-off frequency ωc (normalized) and frequency
response HD(ω) given by:

HD

(
e jw

)
=

{
1, |ω| ≤ ωc

0, ωc < |ω| ≤ π
(6)

Impulse response, hD[n] for this filter can be found by:

hD[n] =
1

2π

∫ π

−π

1 × e jωndω

=
1

2π

∫ π

−π

e jωndω

=
2 fc sin(nωx)

nωc
,n , 0,−∞ ≤ n ≤ ∞

= 2 fc,n = 0

(7)

Now as hD[n] is infinite duration signal, its z transform HD(z) will also be of infinite
duration:

H(z) =

∞∑
n=−∞

h(n)z−n

= · · · + h(−2)z2 + h(−1)z1 + h(0) + h(1)z−1 + h(2)z−2 + · · ·

(8)

It is apparent from equation (7) and (8) that hD[n] is both non-causal and infinite in dura-
tion. Hence FIR filter given in equation (7) is not practically realizable.

An obvious solution is to truncate the filter coefficients to i = −
M
2
, · · · 0, · · · +

M
2

, then

shifting to the right by
M
2

gives the filter coefficient for an Mth order physically realizable
Low-Pass Filter. However this introduces undesirable ripples and overshoot ( Gibbs phe-
nomenon). Figure (8.1) illustrates the effects of truncating the filter coefficients. Increasing
the filter length does not reduce the problems.
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Figure. 8.1: Effects on the frequency response of truncating the ideal impulse response to
M = 21, 51 and 501 coefficients.

Window method is developed to get rid of this undesirable Gibbs oscillation in the passband
and stopband of the designed FIR filter. As Gibbs oscillations are the result of abrupt
truncation of the infinite length filter coefficient sequence. Hence a window function is
required which is symmetrical and can gradually weight the desired FIR coefficients down
to zeros at the both ends for the range of −M ≤ n ≤M. Applying the window sequence to
the filter coefficients gives

hw[n] = h[n]ẇ[n] (9)

where w[n] is the window function. Desirable frequency characteristics can be obtained
by making a better selection for the window, w[n]. There are several window functions
are used for this purpose. Some of them are as follows:

1. Rectangular window:
wrec[n] = 1, 0 ≤ n ≤M − 1

2. Triangular (Bartlett) window:

wtri[n] =


2n

M − 1
, 0 ≤ n ≤ M−1

2

2 −
2n

M − 1
, M−1

2 ≤ n ≤M − 1

3. Hanning window:

whan[n] = 0.5 − 0.5 cos
(nπ

M

)
, 0 ≤ n ≤M(total M+1 points)

4. Hamming window:

wham[n] = 0.54 − 0.46 cos
(nπ

M

)
, 0 ≤ n ≤M
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Figure. 8.2: Shapes of Window functions for the case of M = 64 (Upper Figure) (b) Frequency
response of different window functions

5. Blackman window:

wblack [n] = 0.42 − 0.5 cos
(nπ

M

)
+ 0.08 cos

(2nπ
M

)
, 0 ≤ n ≤M

Shapes of different window functions in time domain is given in figure (8.2) for M =
64. In window-based filter design, there are two key frequency domain effects important
to the design: the transition band roll-off and the passband and stopband ripple. Two
parameters in the spectrum influence these filter properties.

• The filter’s roll-off is related to the width of the center lobe of the window’s magnitude
spectrum

• The ripple is influenced by the ratio of the mainlobe amplitude to the first sidelobe
amplitude (or difference in dB scale).

These two window spectrum parameters are not independent. Theoretical values of these
two parameters for the aforementioned windows are given in Table 1.
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PRELAB TASKS
1. Consider an FIR Filter:

y[n] = 0.1x[n] + 0.25x[n] + 0.2x[n − 2]

Determine the transfer function, feedforward coefficients, filter length and
impulse response of the filter.

2. What are the advantages of FIR filters over IIR filters?

3. Why is window method necessary for designing FIR filters?
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Part 2
FIR Filter Design in MATLAB/OCTAVE

• Realization of FIR filters in MATLAB/OCTAVE

• Functions to use: fir(), freqz()

Instructions

• Organizing files and folder properly for later use.

• Make a unique named folder for this lab like EEE3218_SP20_A1_180105001
under any drive other than C drive.

• For every week make a subfolder to keep the all the tasks in a specific week
separated from other tasks.

• Always try to work in the folder specifically created for the current week.

• Follow MATLAB/OCTAVE naming convention for giving a meaningful name
before saving it in MATLAB/OCTAVE.

• While running a code be judicious in choosing add to path or change directory.
Use add to path when you are using a file from different folder.

In this section, we’ll discuss the design procedure of an FIR filter by window method. The
steps are as follow:

• We need to specify the ideal or desired frequency response of filter, HD(ω).

• Then we need to compute hD[n] of the desired filter by evaluating inverse Fourier
Transform. For the standard frequency selective filters, the expressions for hD[n] are
summarized in Table 2.

• We need to select a window function that satisfies the passband or attenuation
specifications and determine the number of filter coefficients using the appropriate
relationship between the filter length and the transition width, δ f (expressed as a
fraction of the sampling frequency).

• Then w[n] is obtained for the chosen window function and the values of the actual
FIR coefficients, h[n] by multiplying hD[n] by w[n]:

h[n] = hD[n]w[n]
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In the table 2, ωc (fc) is the cut-off frequency for low and high pass filters. ω1 and ω2

are two cut-off frequencies for a bandpass and bandstop filters. The above procedures
will be followed while calculating filter coefficients by hand. However in MATLAB, fir1()
command is used to design an FIR filter by windowing method following the above
procedures. The syntax for this function is:

fir1(n, wn, ftype, window)

where,

n is the order (number of zeros) of the FIR Filter
wn is the frequency requirement (passband edge, stopband edge) of the filter. wn is a number
between 0 and 1, where 1 corresponds to the Nyquist frequency, half the sampling frequency
ftype is the type of filter we’ll use for example ’low’, ’high’, ’bandpass’ and ’stop’
window is the type of window we want to use.

Let us consider an example to show the application of FIR filter design procedure. We’ll
design a low pass FIR filter with the following specifications:

• Passband edge frequency 1.5 KHz

• Transition Width 0.5 KHz

• Stopband Attenuation >50 dB

• Sampling Frequency 8 KHz

From table 1, we find that Hamming or Blackman window provides stopband attenuation
>50 dB and hence can be used to design this filter. We’ll use the Blackman window.

Normalized transition width, ∆ f =
0.5
8

= 0.0625. So filter order, M =
5.5

0.0625
= 88. Due

to the smearing effect of the window on the filter response, the cutoff frequency of the
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resulting filter will be different from that given in the specifications. To account for this,
we’ll use and fc that is centered on the tranistion band:

f
′

c = fc + ∆F/2 = 1.5 + 0.5/2 = 1.5 + 0.25 = 1.75kHz

Following is the code for computing filter coefficients for this filter:

Listing 1: Design of a low pass FIR filter using Blackman Window
1 clc;
2 clear all;
3 close all;
4
5 Fs = 8e3; % sampling frequency
6 TW = 0.5e3; % Transition width
7 PBE = 1.5e3; % Passband Edge frequency
8
9 delf = TW/Fs; % normalized transition width

10 M = round(5.5/delf); % Filter order for Blackman filter
11 corner = PBE+TW/2; % corner frequency = Passband_edge+transition_width/2
12 wn = 2*pi*corner/Fs; % converting wn to 2*pi range
13 a = fir1(M, wn/pi, 'low', blackman(M+1)); % filter coefficients
14 % M = order of the filter
15 % wn = passband edge frequency
16 % 'low' = lowpass filter
17 % blackman (M+1) = M+1 length blackman window
18 % a = filter coefficients
19 N = 512; % number of points for calculating frequency response
20 [h,f] = freqz(a, 1, N, Fs);
21 figure(1)
22 subplot(211)
23 %plot(f, abs(h), 'linewidth', 2);
24 plot(f, 20*log10(abs(h)), 'linewidth', 2);
25 xlabel(Frequency (Hz));
26 ylabel(Magnitude (dB));
27 subplot(212)
28 plot(f, unwrap(angle(h)), 'linewidth', 2);
29 xlabel(Frequency (Hz));
30 ylabel(Angle (Degree));

The magnitude and phase response of the filter is given in the following figure:
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Figure. 8.3: Magnitude and Phase response of the designed FIR filter.

From the figure(8.3), the magnitude response falls gradually after transition band edge
and there are ripples with attenuation > 50 dB in the stopband. The phase reponse of the
FIR filter is observed to be linear as expected. The same filter for the above specifications
can also be designed by Hamming window.

POST LAB TASKS
1. Plot the magnitude and phase responses for a 50th order Highpass filter as-

suming a sampling frequency of 5KHz and a cut-off frequency of 1KHz for
each of the windows mentioned in the lab manual.

2. Design an FIR bandpass filter to meet the following specifications:

• passband 150-250 Hz

• transition width 50 Hz

• passband ripple 0.05 dB

• stopband attenuation 50 dB

• sampling frequency 1 KHz

Choose a suitable window method and explain why your reasoning of choosing
that particular window. Plot the magnitude and phase response of the FIR filter.
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